Mittal Monica, Kumar Ramakrishnan B, Balagunaseelan Navisraj, Hamberg Mats, Jegerschöld Caroline, Rådmark Olof, Haeggström Jesper Z, Rinaldo-Matthis Agnes
Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden.
Department of Biosciences and Nutrition, Karolinska Institutet, 14183 Huddinge, Sweden; School of Technology and Health, KTH Royal Institute of Technology, 14183 Huddinge, Sweden.
Bioorg Med Chem Lett. 2016 Aug 1;26(15):3547-51. doi: 10.1016/j.bmcl.2016.06.025. Epub 2016 Jun 11.
Human 5-lipoxygenase (5-LOX) is responsible for the formation of leukotriene (LT)A4, a pivotal intermediate in the biosynthesis of the leukotrienes, a family of proinflammatory lipid mediators. 5-LOX has thus gained attention as a potential drug target. However, details of the kinetic mechanism of 5-LOX are still obscure. In this Letter, we investigated the kinetic isotope effect (KIE) of 5-LOX with its physiological substrate, arachidonic acid (AA). The observed KIE is 20±4 on kcat and 17±2 on kcat/KM at 25°C indicating a non-classical reaction mechanism. The observed rates show slight temperature dependence at ambient temperatures ranging from 4 to 35°C. Also, we observed low Arrhenius prefactor ratio (AH/AD=0.21) and a small change in activation energy (Ea(D)-Ea(H)=3.6J/mol) which suggests that 5-LOX catalysis involves tunneling as a mechanism of H-transfer. The measured KIE for 5-LOX involves a change in regioselectivity in response to deuteration at position C7, resulting in H-abstraction form C10 and formation of 8-HETE. The viscosity experiments influence the (H)kcat, but not (D)kcat. However the overall kcat/KM is not affected for labeled or unlabeled AA, suggesting that either the product release or conformational rearrangement might be involved in dictating kinetics of 5-LOX at saturating conditions. Investigation of available crystal structures suggests the role of active site residues (F421, Q363 and L368) in regulating the donor-acceptor distances, thus affecting H-transfer as well as regiospecificity. In summary, our study shows that that the H-abstraction is the rate limiting step for 5-LOX and that the observed KIE of 5-LOX is masked by a change in regioselectivity.
人5-脂氧合酶(5-LOX)负责白三烯(LT)A4的形成,白三烯是一族促炎脂质介质生物合成中的关键中间体。因此,5-LOX作为一个潜在的药物靶点受到关注。然而,5-LOX的动力学机制细节仍不清楚。在本信函中,我们研究了5-LOX与其生理底物花生四烯酸(AA)的动力学同位素效应(KIE)。在25°C下观察到的KIE在kcat上为20±4,在kcat/KM上为17±2,表明其反应机制是非经典的。在4至35°C的环境温度范围内,观察到的反应速率对温度有轻微依赖性。此外,我们观察到低阿仑尼乌斯前因子比(AH/AD = 0.21)和活化能的小变化(Ea(D) - Ea(H) = 3.6J/mol),这表明5-LOX催化涉及隧穿作为氢转移的一种机制。测量的5-LOX的KIE涉及区域选择性的变化,这是由于C7位氘代导致的,从而导致从C10位夺取氢并形成8-羟基二十碳四烯酸(8-HETE)。粘度实验影响(H)kcat,但不影响(D)kcat。然而,对于标记或未标记的AA,总体kcat/KM不受影响,这表明在饱和条件下,产物释放或构象重排可能参与决定5-LOX的动力学。对现有晶体结构的研究表明活性位点残基(F421、Q363和L368)在调节供体-受体距离方面的作用,从而影响氢转移以及区域特异性。总之,我们的研究表明氢夺取是5-LOX的限速步骤,并且观察到的5-LOX的KIE被区域选择性的变化所掩盖。