Suppr超能文献

空气中氧的腔衰荡吸收作为开放光学腔和低温光学腔的温度传感器

Cavity Ring-Down Absorption of O in Air as a Temperature Sensor for an Open and a Cryogenic Optical Cavity.

作者信息

Nyaupane Parashu R, Perez-Delgado Yasnahir, Camejo David, Wright Lesley M, Manzanares Carlos E

机构信息

1 Department of Chemistry & Biochemistry, Baylor University, Waco, Texas, USA.

2 Mechanical Engineering Department, Baylor University, Waco, Texas, USA.

出版信息

Appl Spectrosc. 2017 May;71(5):847-855. doi: 10.1177/0003702816657567. Epub 2016 Jun 30.

Abstract

The A-band of oxygen has been measured at low resolution at temperatures between 90 K and 373 K using the phase shift cavity ring down (PS-CRD) technique. For temperatures between 90 K and 295 K, the PS-CRD technique presented here involves an optical cavity attached to a cryostat. The static cell and mirrors of the optical cavity are all inside a vacuum chamber at the same temperature of the cryostat. The temperature of the cell can be changed between 77 K and 295 K. For temperatures above 295 K, a hollow glass cylindrical tube without windows has been inserted inside an optical cavity to measure the temperature of air flowing through the tube. The cavity consists of two highly reflective mirrors which are mounted parallel to each other and separated by a distance of 93 cm. In this experiment, air is passed through a heated tube. The temperature of the air flowing through the tube is determined by measuring the intensity of the oxygen absorption as a function of the wavenumber. The A-band of oxygen is measured between 298 K and 373 K, with several air flow rates. To obtain the temperature, the energy of the lower rotational state for seven selected rotational transitions is linearly fitted to a logarithmic function that contains the relative intensity of the rotational transition, the initial and final rotational quantum numbers, and the energy of the transition. Accuracy of the temperature measurement is determined by comparing the calculated temperature from the spectra with the temperature obtained from a calibrated thermocouple inserted at the center of the tube. This flowing air temperature sensor will be used to measure the temperatures of cooling air at the input (cold air) and output (hot air) after cooling the blades of a laboratory gas turbine. The results could contribute to improvements in turbine blade cooling design.

摘要

利用相移腔衰荡(PS-CRD)技术,在90K至373K的温度范围内,对氧气的A带进行了低分辨率测量。对于90K至295K的温度范围,这里介绍的PS-CRD技术涉及一个连接到低温恒温器的光学腔。光学腔的静态池和镜子都在与低温恒温器相同温度的真空室内。池的温度可以在77K至295K之间变化。对于高于295K的温度,将一个无窗口的空心玻璃圆柱管插入光学腔内,以测量流过该管的空气温度。该腔由两个相互平行安装、间距为93厘米的高反射镜组成。在这个实验中,空气通过一个加热管。通过测量氧气吸收强度随波数的变化来确定流过该管的空气温度。在298K至373K之间,以几种空气流速测量氧气的A带。为了获得温度,对七个选定转动跃迁的较低转动态能量进行线性拟合,得到一个对数函数,该函数包含转动跃迁的相对强度、初始和最终转动量子数以及跃迁能量。通过将光谱计算得到的温度与插入管中心的校准热电偶获得的温度进行比较,确定温度测量的准确性。这种流动空气温度传感器将用于测量实验室燃气轮机叶片冷却后输入(冷空气)和输出(热空气)处冷却空气的温度。这些结果可能有助于改进涡轮叶片冷却设计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验