Suppr超能文献

基于进化模糊神经推理系统的高速公路点检测器数据的行程时间估计

Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System.

作者信息

Tang Jinjun, Zou Yajie, Ash John, Zhang Shen, Liu Fang, Wang Yinhai

机构信息

School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.

Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195-2700, United States of America.

出版信息

PLoS One. 2016 Feb 1;11(2):e0147263. doi: 10.1371/journal.pone.0147263. eCollection 2016.

Abstract

Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP).

摘要

行程时间是用于评估道路网络拥堵程度的一项重要指标。本文提出了一种基于进化模糊神经推理系统来估计行程时间的新方法。该系统的输入变量是从给定路段上下游的环形检测器收集的交通流数据(流量、占有率和速度),输出变量是路段行程时间。采用一阶高木-关野模糊规则集来完成推理。为了训练进化模糊神经网络(EFNN),提出了两个学习过程:(1)采用K均值方法将输入样本划分为不同的簇,并为每个簇设计高斯模糊隶属函数来度量样本到簇中心的隶属度。随着输入样本数量的增加,簇中心会被修改,隶属函数也会更新;(2)使用加权递归最小二乘估计器来优化高木-关野型模糊规则中线性函数的参数。由实际数据和模拟数据组成的测试数据集用于测试所提出的方法。利用平均绝对误差(MAE)、均方根误差(RMSE)和平均绝对相对误差(MARE)这三个常用标准来评估估计性能。通过与包括多元线性回归(MLR)、瞬时模型(IM)、线性模型(LM)、神经网络(NN)和累积图(CP)在内的现有方法进行比较,估计结果证明了EFNN方法的准确性和有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/44a2/4735499/a6737834c678/pone.0147263.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验