Suppr超能文献

预测急性百草枯中毒患者的生存概率。

Predicting the probability of survival in acute paraquat poisoning.

机构信息

Division of Nephrology & Toxicology, Department of Internal Medicine, Presbyterian Medical Center, Jeonju, Korea.

Department of Biochemistry, Christian Medical Research Center, Jeonju, Korea.

出版信息

Kidney Res Clin Pract. 2016 Jun;35(2):102-6. doi: 10.1016/j.krcp.2016.01.003. Epub 2016 Feb 27.

Abstract

BACKGROUND

Paraquat (PQ) concentration-time data have been used to predict prognosis for 3 decades. The aim of this study was to find a more accurate method to predict the probability of survival.

METHODS

This study included 788 patients with PQ poisoning who were diagnosed using plasma PQ concentration between January 2005 and August 2012. We divided these patients into 2 groups (survivors vs. nonsurvivors), compared their clinical characteristics, and analyzed the predictors of survival.

RESULTS

The mean age of the included patients was 57 years (range, 14-95 years). When we compared clinical characteristics between survivors (n = 149, 19%) and nonsurvivors (n = 639, 81%), survivors were younger (47 ± 14 years vs. 59 ± 16 years) and had lower plasma PQ concentrations (1.44 ± 8.77 μg/mL vs. 80.33 ± 123.15 μg/mL) than nonsurvivors. On admission, serum creatinine was lower in survivors than in nonsurvivors (0.95 ± 0.91 mg/dL vs. 1.88 ± 1.27 mg/dL). In multivariate logistic regression analysis, age and logarithmically converted serum creatinine [ln(Cr)], [ln(time)], and [ln(PQ)] were assessed as prognostic factors to predict survival in PQ poisoning. The predicted probability of survival using significant prognostic factors was exp (logit)/[1 + exp(logit)], where logit = -1.347 + [0.212 × sex (male = 1, female = 0)] + (0.032 × age) + [1.551 × ln(Cr)] + [0.391 × ln(hours since ingestion)] + [1.076 × ln(plasma PQ μg/mL)]. With this equation, the sensitivity and specificity were 86.5% and 98.7%, respectively.

CONCLUSION

Age, ln(Cr), ln(time), and ln(PQ) were important prognostic factors in PQ poisoning, and our equation can be helpful to predict the survival in acute PQ poisoning patients.

摘要

背景

百草枯(PQ)浓度-时间数据已被用于预测预后 30 年。本研究旨在寻找一种更准确的方法来预测生存概率。

方法

本研究纳入了 2005 年 1 月至 2012 年 8 月期间通过血浆 PQ 浓度诊断为 PQ 中毒的 788 例患者。我们将这些患者分为两组(存活组与非存活组),比较他们的临床特征,并分析生存的预测因素。

结果

纳入患者的平均年龄为 57 岁(范围 14-95 岁)。当我们比较存活组(n=149,19%)和非存活组(n=639,81%)的临床特征时,存活组患者更年轻(47±14 岁 vs. 59±16 岁),且血浆 PQ 浓度更低(1.44±8.77μg/mL vs. 80.33±123.15μg/mL)。入院时,存活组患者的血清肌酐水平低于非存活组(0.95±0.91mg/dL vs. 1.88±1.27mg/dL)。在多变量逻辑回归分析中,年龄和血清肌酐的自然对数值[ln(Cr)]、[ln(时间)]和[ln(PQ)]被评估为预测 PQ 中毒患者生存的预后因素。使用显著预后因素预测的生存概率为 exp(logit)/[1+exp(logit)],其中 logit=-1.347+[0.212×性别(男=1,女=0)]+(0.032×年龄)+[1.551×ln(Cr)]+[0.391×ln(摄入后时间)]+[1.076×ln(血浆 PQμg/mL)]。应用该方程,敏感性和特异性分别为 86.5%和 98.7%。

结论

年龄、ln(Cr)、ln(时间)和 ln(PQ)是 PQ 中毒的重要预后因素,我们的方程有助于预测急性 PQ 中毒患者的生存。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/164a/4919560/c12f48e24093/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验