Suppr超能文献

病毒动力学模型如何为急性病毒感染治疗临床试验中的终点指标提供信息?

How Can Viral Dynamics Models Inform Endpoint Measures in Clinical Trials of Therapies for Acute Viral Infections?

作者信息

Vegvari Carolin, Hadjichrysanthou Christoforos, Cauët Emilie, Lawrence Emma, Cori Anne, de Wolf Frank, Anderson Roy M

机构信息

Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, United Kingdom.

Janssen Prevention Center, Leiden, The Netherlands.

出版信息

PLoS One. 2016 Jul 1;11(7):e0158237. doi: 10.1371/journal.pone.0158237. eCollection 2016.

Abstract

Acute viral infections pose many practical challenges for the accurate assessment of the impact of novel therapies on viral growth and decay. Using the example of influenza A, we illustrate how the measurement of infection-related quantities that determine the dynamics of viral load within the human host, can inform investigators on the course and severity of infection and the efficacy of a novel treatment. We estimated the values of key infection-related quantities that determine the course of natural infection from viral load data, using Markov Chain Monte Carlo methods. The data were placebo group viral load measurements collected during volunteer challenge studies, conducted by Roche, as part of the oseltamivir trials. We calculated the values of the quantities for each patient and the correlations between the quantities, symptom severity and body temperature. The greatest variation among individuals occurred in the viral load peak and area under the viral load curve. Total symptom severity correlated positively with the basic reproductive number. The most sensitive endpoint for therapeutic trials with the goal to cure patients is the duration of infection. We suggest laboratory experiments to obtain more precise estimates of virological quantities that can supplement clinical endpoint measurements.

摘要

急性病毒感染给准确评估新型疗法对病毒生长和衰退的影响带来了诸多实际挑战。以甲型流感为例,我们阐述了对决定人类宿主内病毒载量动态变化的感染相关量的测量,如何能让研究人员了解感染的进程和严重程度以及新型治疗方法的疗效。我们使用马尔可夫链蒙特卡罗方法,从病毒载量数据中估计出决定自然感染进程的关键感染相关量的值。这些数据是罗氏公司在作为奥司他韦试验一部分的志愿者激发试验中收集的安慰剂组病毒载量测量值。我们计算了每位患者这些量的值以及这些量、症状严重程度和体温之间的相关性。个体间最大的差异出现在病毒载量峰值和病毒载量曲线下面积。总症状严重程度与基本再生数呈正相关。以治愈患者为目标的治疗试验中最敏感的终点是感染持续时间。我们建议进行实验室实验,以获得可补充临床终点测量的病毒学量的更精确估计值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f980/4930163/75e01ebeac8d/pone.0158237.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验