Khemani Vedika, Pollmann Frank, Sondhi S L
Physics Department, Princeton University, Princeton, New Jersey 08544, USA.
Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden, Germany.
Phys Rev Lett. 2016 Jun 17;116(24):247204. doi: 10.1103/PhysRevLett.116.247204.
The eigenstates of many-body localized (MBL) Hamiltonians exhibit low entanglement. We adapt the highly successful density-matrix renormalization group method, which is usually used to find modestly entangled ground states of local Hamiltonians, to find individual highly excited eigenstates of MBL Hamiltonians. The adaptation builds on the distinctive spatial structure of such eigenstates. We benchmark our method against the well-studied random field Heisenberg model in one dimension. At moderate to large disorder, the method successfully obtains excited eigenstates with high accuracy, thereby enabling a study of MBL systems at much larger system sizes than those accessible to exact-diagonalization methods.
多体局域(MBL)哈密顿量的本征态表现出低纠缠特性。我们采用了极为成功的密度矩阵重整化群方法(该方法通常用于寻找局部哈密顿量的适度纠缠基态)来寻找MBL哈密顿量的单个高激发本征态。这种改进基于此类本征态独特的空间结构。我们将我们的方法应用于一维中经过充分研究的随机场海森堡模型进行基准测试。在中等至大无序度下,该方法成功地高精度获得了激发本征态,从而能够研究比精确对角化方法可及的系统尺寸大得多的MBL系统。