Suppr超能文献

多体局域相中幂律纠缠谱

Power-Law Entanglement Spectrum in Many-Body Localized Phases.

作者信息

Serbyn Maksym, Michailidis Alexios A, Abanin Dmitry A, Papić Z

机构信息

Department of Physics, University of California, Berkeley, California 94720, USA.

School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom.

出版信息

Phys Rev Lett. 2016 Oct 14;117(16):160601. doi: 10.1103/PhysRevLett.117.160601. Epub 2016 Oct 10.

Abstract

The entanglement spectrum of the reduced density matrix contains information beyond the von Neumann entropy and provides unique insights into exotic orders or critical behavior of quantum systems. Here, we show that strongly disordered systems in the many-body localized phase have power-law entanglement spectra, arising from the presence of extensively many local integrals of motion. The power-law entanglement spectrum distinguishes many-body localized systems from ergodic systems, as well as from ground states of gapped integrable models or free systems in the vicinity of scale-invariant critical points. We confirm our results using large-scale exact diagonalization. In addition, we develop a matrix-product state algorithm which allows us to access the eigenstates of large systems close to the localization transition, and discuss general implications of our results for variational studies of highly excited eigenstates in many-body localized systems.

摘要

约化密度矩阵的纠缠谱包含超越冯·诺依曼熵的信息,并为量子系统的奇异序或临界行为提供独特见解。在此,我们表明处于多体局域化相的强无序系统具有幂律纠缠谱,这源于大量存在的广延性局部运动积分。幂律纠缠谱将多体局域化系统与遍历系统区分开来,也与能隙可积模型的基态或尺度不变临界点附近的自由系统区分开来。我们使用大规模精确对角化来证实我们的结果。此外,我们开发了一种矩阵乘积态算法,它使我们能够获取接近局域化转变的大系统的本征态,并讨论我们的结果对多体局域化系统中高激发本征态变分研究的一般意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验