Suppr超能文献

通过DMRG-X方法获取局域化XX链的高激发本征态。

Obtaining highly excited eigenstates of the localized XX chain via DMRG-X.

作者信息

Devakul Trithep, Khemani Vedika, Pollmann Frank, Huse David A, Sondhi S L

机构信息

Department of Physics, Princeton University, Princeton, NJ 08544, USA

Department of Physics, Harvard University, Cambridge, MA 02138, USA.

出版信息

Philos Trans A Math Phys Eng Sci. 2017 Dec 13;375(2108). doi: 10.1098/rsta.2016.0431.

Abstract

We benchmark a variant of the recently introduced density matrix renormalization group (DMRG)-X algorithm against exact results for the localized random field XX chain. We find that the eigenstates obtained via DMRG-X exhibit a highly accurate l-bit description for system sizes much bigger than the direct, many-body, exact diagonalization in the spin variables is able to access. We take advantage of the underlying free fermion description of the XX model to accurately test the strengths and limitations of this algorithm for large system sizes. We discuss the theoretical constraints on the performance of the algorithm from the entanglement properties of the eigenstates, and its actual performance at different values of disorder. A small but significant improvement to the algorithm is also presented, which helps significantly with convergence. We find that, at high entanglement, DMRG-X shows a bias towards eigenstates with low entanglement, but can be improved with increased bond dimension. This result suggests that one must be careful when applying the algorithm for interacting many-body localized spin models near a transition.This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'.

摘要

我们将最近引入的密度矩阵重整化群(DMRG)-X算法的一个变体与局域随机场XX链的精确结果进行基准测试。我们发现,通过DMRG-X获得的本征态对于比自旋变量中的直接多体精确对角化所能处理的大得多的系统尺寸,展现出高度精确的l比特描述。我们利用XX模型的基础自由费米子描述,来准确测试该算法在大系统尺寸下的优势和局限性。我们从本征态的纠缠特性讨论了算法性能的理论约束,以及它在不同无序值下的实际性能。还提出了对该算法的一个虽小但显著的改进,这对收敛有很大帮助。我们发现,在高纠缠情况下,DMRG-X表现出偏向低纠缠本征态的倾向,但可以通过增加键维度来改进。这一结果表明,在将该算法应用于接近转变点的相互作用多体局域自旋模型时必须谨慎。本文是主题为“量子系统中遍历性的崩溃:从固体到合成物质”特刊的一部分。

相似文献

4
Thermal inclusions: how one spin can destroy a many-body localized phase.热杂质:一个自旋如何破坏多体局域相。
Philos Trans A Math Phys Eng Sci. 2017 Dec 13;375(2108). doi: 10.1098/rsta.2016.0428.
5
Excited-State DMRG Made Simple with FEAST.使用 FEAST 实现简单的激发态密度矩阵重正化群方法。
J Chem Theory Comput. 2022 Jan 11;18(1):415-430. doi: 10.1021/acs.jctc.1c00984. Epub 2021 Dec 16.
8
Power-Law Entanglement Spectrum in Many-Body Localized Phases.多体局域相中幂律纠缠谱
Phys Rev Lett. 2016 Oct 14;117(16):160601. doi: 10.1103/PhysRevLett.117.160601. Epub 2016 Oct 10.

本文引用的文献

1
Two Universality Classes for the Many-Body Localization Transition.多体局域化转变的两个普适类。
Phys Rev Lett. 2017 Aug 18;119(7):075702. doi: 10.1103/PhysRevLett.119.075702. Epub 2017 Aug 16.
3
Power-Law Entanglement Spectrum in Many-Body Localized Phases.多体局域相中幂律纠缠谱
Phys Rev Lett. 2016 Oct 14;117(16):160601. doi: 10.1103/PhysRevLett.117.160601. Epub 2016 Oct 10.
5
Early Breakdown of Area-Law Entanglement at the Many-Body Delocalization Transition.多体局域化转变处面积律纠缠的早期瓦解
Phys Rev Lett. 2015 Oct 30;115(18):187201. doi: 10.1103/PhysRevLett.115.187201. Epub 2015 Oct 28.
6
Quantum criticality of hot random spin chains.
Phys Rev Lett. 2015 May 29;114(21):217201. doi: 10.1103/PhysRevLett.114.217201. Epub 2015 May 27.
7
Many-body localization in a disordered quantum Ising chain.无序量子伊辛链中的多体局域化
Phys Rev Lett. 2014 Sep 5;113(10):107204. doi: 10.1103/PhysRevLett.113.107204. Epub 2014 Sep 4.
8
Local conservation laws and the structure of the many-body localized states.局域守恒律与多体局域态的结构。
Phys Rev Lett. 2013 Sep 20;111(12):127201. doi: 10.1103/PhysRevLett.111.127201. Epub 2013 Sep 17.
9
Entropy scaling and simulability by matrix product states.熵标度与矩阵乘积态的可模拟性。
Phys Rev Lett. 2008 Jan 25;100(3):030504. doi: 10.1103/PhysRevLett.100.030504.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验