Chauhan Sangeeta, Diril M Kasim, Lee Joanna H S, Bisteau Xavier, Manoharan Vanessa, Adhikari Deepak, Ratnacaram Chandrahas Koumar, Janela Baptiste, Noffke Juliane, Ginhoux Florent, Coppola Vincenzo, Liu Kui, Tessarollo Lino, Kaldis Philipp
A*STAR (Agency for Science, Technology and Research), Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos#3-09, Singapore 138673.
Department of Chemistry and Molecular Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden.
Biochem J. 2016 Sep 15;473(18):2783-98. doi: 10.1042/BCJ20160607. Epub 2016 Jul 1.
Cyclin-dependent kinases (Cdks) control the eukaryotic cell cycle by phosphorylating serine and threonine residues in key regulatory proteins, but some Cdk family members may exert kinase-independent functions that cannot easily be assessed using gene knockout approaches. While Cdk2-deficient mice display near-normal mitotic cell proliferation due to the compensatory activities of Cdk1 and Cdk4, they are unable to undergo meiotic generation of gametes and are consequently sterile. To investigate whether Cdk2 regulates meiosis via protein phosphorylation or by alternative kinase-independent mechanisms, we generated two different knockin mouse strains in which Cdk2 point mutations ablated enzyme activity without altering protein expression levels. Mice homozygous for the mutations Cdk2(D145N/D145N) or Cdk2(T160A/T160A) expressed only 'kinase-dead' variants of Cdk2 under the control of the endogenous promoter, and despite exhibiting normal expression of cell cycle regulatory proteins and complexes, both mutations rendered mice sterile. Mouse cells that expressed only 'kinase-dead' variants of Cdk2 displayed normal mitotic cell cycle progression and proliferation both in vitro and in vivo, indicating that loss of Cdk2 kinase activity exerted little effect on this mode of cell division. In contrast, the reproductive organs of Cdk2 mutant mice exhibited abnormal morphology and impaired function associated with defective meiotic cell division and inability to produce gametes. Cdk2 mutant animals were therefore comparable to gene knockout mice, which completely lack the Cdk2 protein. Together, our data indicate that the essential meiotic functions of Cdk2 depend on its kinase activity, without which the generation of haploid cells is disrupted, resulting in sterility of otherwise healthy animals.
细胞周期蛋白依赖性激酶(Cdks)通过磷酸化关键调节蛋白中的丝氨酸和苏氨酸残基来控制真核细胞周期,但一些Cdk家族成员可能发挥不依赖激酶的功能,而使用基因敲除方法难以轻易评估这些功能。虽然由于Cdk1和Cdk4的代偿活性,Cdk2缺陷小鼠表现出近乎正常的有丝分裂细胞增殖,但它们无法进行减数分裂产生配子,因此不育。为了研究Cdk2是通过蛋白质磷酸化还是通过其他不依赖激酶的机制调节减数分裂,我们构建了两种不同的基因敲入小鼠品系,其中Cdk2点突变消除了酶活性,而不改变蛋白质表达水平。纯合突变Cdk2(D145N/D145N)或Cdk2(T160A/T160A)的小鼠在内源启动子的控制下仅表达“激酶失活”的Cdk2变体,尽管细胞周期调节蛋白和复合物表达正常,但两种突变均使小鼠不育。仅表达“激酶失活”Cdk2变体的小鼠细胞在体外和体内均表现出正常的有丝分裂细胞周期进程和增殖,这表明Cdk2激酶活性的丧失对这种细胞分裂模式影响很小。相比之下,Cdk2突变小鼠的生殖器官表现出异常形态和功能受损,这与减数分裂细胞分裂缺陷和无法产生配子有关。因此,Cdk2突变动物与完全缺乏Cdk2蛋白的基因敲除小鼠相当。总之,我们的数据表明,Cdk2在减数分裂中的基本功能依赖于其激酶活性,没有这种活性,单倍体细胞的产生就会受到破坏,导致原本健康的动物不育。