Suppr超能文献

使用低分辨率临床CT图像量化小梁骨材料各向异性和取向:一项可行性研究。

Quantifying trabecular bone material anisotropy and orientation using low resolution clinical CT images: A feasibility study.

作者信息

Nazemi S Majid, Cooper David M L, Johnston James D

机构信息

Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada .

Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, 107 Wiggins Rd, SK S7N 5E5, Canada.

出版信息

Med Eng Phys. 2016 Sep;38(9):978-87. doi: 10.1016/j.medengphy.2016.06.011. Epub 2016 Jun 29.

Abstract

Accounting for spatial variation of trabecular material anisotropy and orientation can improve the accuracy of quantitative computed tomography-based finite element (FE) modeling of bone. The objective of this study was to investigate the feasibility of quantifying trabecular material anisotropy and orientation using clinical computed tomography (CT). Forty four cubic volumes of interest were obtained from micro-CT images of the human radius. Micro-FE modeling was performed on the samples to obtain orthotropic stiffness entries as well as trabecular orientation. Simulated computed tomography images (0.32, 0.37, and 0.5mm isotropic voxel sizes) were created by resampling micro-CT images with added image noise. The gray-level structure tensor was used to derive fabric eigenvalues and eigenvectors in simulated CT images. For 'best case' comparison purposes, Mean Intercept Length was used to define fabric from micro-CT images. Regression was used in combination with eigenvalues, imaged density and FE to inversely derive the constants used in Cowin and Zysset-Curnier fabric-elasticity equations, and for comparing image derived fabric-elasticity stiffness entries to those obtained using micro-FE. Image derived eigenvectors (which indicated trabecular orientation) were then compared to orientation derived using micro-FE. When using clinically available voxel sizes, gray-level structure tensor derived fabric combined with Cowin's equations was able to explain 94-97% of the variance in orthotropic stiffness entries while Zysset-Curnier equations explained 82-88% of the variance in stiffness. Image derived orientation deviated by 4.4-10.8° from micro-FE derived orientation. Our results indicate potential to account for spatial variation of trabecular material anisotropy and orientation in subject-specific finite element modeling of bone using clinically available CT.

摘要

考虑小梁材料各向异性和方向的空间变化可以提高基于定量计算机断层扫描的骨有限元(FE)建模的准确性。本研究的目的是探讨使用临床计算机断层扫描(CT)量化小梁材料各向异性和方向的可行性。从人桡骨的显微CT图像中获取了44个立方感兴趣区域。对样本进行微观有限元建模,以获得正交各向异性刚度项以及小梁方向。通过对添加了图像噪声的显微CT图像进行重采样,创建了模拟计算机断层扫描图像(各向同性体素大小分别为0.32、0.37和0.5mm)。灰度结构张量用于推导模拟CT图像中的结构特征值和特征向量。为了进行“最佳情况”比较,使用平均截距长度从显微CT图像中定义结构。回归结合特征值、成像密度和有限元来反向推导Cowin和Zysset-Curnier结构-弹性方程中使用的常数,并将图像推导的结构-弹性刚度项与使用微观有限元获得的刚度项进行比较。然后将图像推导的特征向量(表示小梁方向)与使用微观有限元推导的方向进行比较。当使用临床可用的体素大小时,灰度结构张量推导的结构与Cowin方程相结合能够解释正交各向异性刚度项中94-97%的方差,而Zysset-Curnier方程解释了刚度中方差的82-88%。图像推导的方向与微观有限元推导的方向偏差4.4-10.8°。我们的结果表明,使用临床可用的CT在骨的个体特异性有限元建模中考虑小梁材料各向异性和方向的空间变化具有潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验