Suppr超能文献

P2样和P22样原噬菌体对理解有尾噬菌体的巨大多样性和丰度的贡献。

Contributions of P2- and P22-like prophages to understanding the enormous diversity and abundance of tailed bacteriophages.

作者信息

Casjens Sherwood R, Grose Julianne H

机构信息

Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, University of Utah, Salt Lake City, UT 84112, United States; Department of Biology, University of Utah, Salt Lake City, UT 84112, United States.

Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT 84602, United States.

出版信息

Virology. 2016 Sep;496:255-276. doi: 10.1016/j.virol.2016.05.022. Epub 2016 Jun 30.

Abstract

We identified 9371 tailed phage prophages of 20 known types in reported complete genome sequences of 3298 bacteria in the Salmonella genus. These include 4758 P2 type and 744 P22 type prophages. The latter prophage types were found in the genome sequences of 127 and 24 bacterial host genera, increasing the known host ranges of phages in these groups by 114 and 20 genera, respectively. These prophage nucleotide sequences displayed much more diversity than was previously known from the 48 P2 and 24 P22 type authentic phages whose genomes have been sequenced. More detailed analysis of these prophage sequences indicated that major capsid protein (MCP) gene exchange between tailed phage clusters or types is extremely rare and that P22 prophage-encoded tailspikes correspond perfectly with their hosts' surface polysaccharide structure; thus, MCP and tailspike sequences accurately predict tailed phage type (and thus lifestyle) and host cell surface polysaccharide structure, respectively.

摘要

我们在沙门氏菌属3298种细菌的已报道完整基因组序列中鉴定出9371个属于20种已知类型的有尾噬菌体原噬菌体。其中包括4758个P2型和744个P22型原噬菌体。后一种原噬菌体类型分别在127个和24个细菌宿主属的基因组序列中被发现,使这些噬菌体组中已知的宿主范围分别增加了114个和20个属。这些原噬菌体核苷酸序列显示出比之前已测序基因组的48个P2型和24个P22型正宗噬菌体更多的多样性。对这些原噬菌体序列的更详细分析表明,有尾噬菌体簇或类型之间的主要衣壳蛋白(MCP)基因交换极其罕见,并且P22原噬菌体编码的尾刺与其宿主的表面多糖结构完美对应;因此,MCP和尾刺序列分别准确预测有尾噬菌体类型(进而预测其生活方式)和宿主细胞表面多糖结构。

相似文献

1
Contributions of P2- and P22-like prophages to understanding the enormous diversity and abundance of tailed bacteriophages.
Virology. 2016 Sep;496:255-276. doi: 10.1016/j.virol.2016.05.022. Epub 2016 Jun 30.
2
A modular view of the bacteriophage genomic space: identification of host and lifestyle marker modules.
Res Microbiol. 2011 Oct;162(8):737-46. doi: 10.1016/j.resmic.2011.06.006. Epub 2011 Jun 28.
3
Host population structure and species resolution reveal prophage transmission dynamics.
mBio. 2024 Oct 16;15(10):e0237724. doi: 10.1128/mbio.02377-24. Epub 2024 Sep 24.
4
The genome sequence of Escherichia coli tailed phage D6 and the diversity of Enterobacteriales circular plasmid prophages.
Virology. 2018 Feb;515:203-214. doi: 10.1016/j.virol.2017.12.019. Epub 2018 Jan 2.
6
Bacteriophage P22 SieA-mediated superinfection exclusion.
mBio. 2024 Feb 14;15(2):e0216923. doi: 10.1128/mbio.02169-23. Epub 2024 Jan 18.
8
Genomic analysis of bacteriophage epsilon 34 of Salmonella enterica serovar Anatum (15+).
BMC Microbiol. 2008 Dec 17;8:227. doi: 10.1186/1471-2180-8-227.
9
Prophage as a genetic reservoir: Promoting diversity and driving innovation in the host community.
Evolution. 2017 Aug;71(8):2080-2089. doi: 10.1111/evo.13287. Epub 2017 Jun 20.
10
Comparative genomic analysis of 142 bacteriophages infecting Salmonella enterica subsp. enterica.
BMC Genomics. 2020 May 26;21(1):374. doi: 10.1186/s12864-020-6765-z.

引用本文的文献

1
Phollow reveals in situ phage transmission dynamics in the zebrafish gut microbiome at single-virion resolution.
Nat Microbiol. 2025 May;10(5):1067-1083. doi: 10.1038/s41564-025-01981-1. Epub 2025 Apr 18.
2
Completing the BASEL phage collection to unlock hidden diversity for systematic exploration of phage-host interactions.
PLoS Biol. 2025 Apr 7;23(4):e3003063. doi: 10.1371/journal.pbio.3003063. eCollection 2025 Apr.
3
Comparative Genomic Analysis of 66 Bacteriophages Infecting Morganella morganii Strains.
Curr Microbiol. 2025 Feb 15;82(4):137. doi: 10.1007/s00284-025-04110-7.
4
Characteristics of phage-plasmids and their impact on microbial communities.
Essays Biochem. 2024 Dec 17;68(5):583-592. doi: 10.1042/EBC20240014.
5
Phollow: Visualizing Gut Bacteriophage Transmission within Microbial Communities and Living Animals.
bioRxiv. 2024 Jun 13:2024.06.12.598711. doi: 10.1101/2024.06.12.598711.
6
Bacteriophage P22 SieA-mediated superinfection exclusion.
mBio. 2024 Feb 14;15(2):e0216923. doi: 10.1128/mbio.02169-23. Epub 2024 Jan 18.
7
Soft rot pathogen 3937 produces tailocins resembling the tails of P2.
Front Microbiol. 2023 Nov 30;14:1307349. doi: 10.3389/fmicb.2023.1307349. eCollection 2023.
8
Diversity and conservation of the genome architecture of phages infecting the Alphaproteobacteria.
Microbiol Spectr. 2024 Jan 11;12(1):e0282723. doi: 10.1128/spectrum.02827-23. Epub 2023 Nov 22.

本文引用的文献

1
Bacteriophage P2.
Bacteriophage. 2016 Feb 18;6(1):e1145782. doi: 10.1080/21597081.2016.1145782. eCollection 2016 Jan-Mar.
2
A Plant-Produced Bacteriophage Tailspike Protein for the Control of Salmonella.
Front Plant Sci. 2016 Jan 8;6:1221. doi: 10.3389/fpls.2015.01221. eCollection 2015.
3
The Pfam protein families database: towards a more sustainable future.
Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85. doi: 10.1093/nar/gkv1344. Epub 2015 Dec 15.
4
5
LYTIC CAPABILITY OF BACTERIOPHAGES (FAMILY MYOVIRIDAE) ON BURKHOLDERIA PSEUDOMALLEI.
Southeast Asian J Trop Med Public Health. 2014 Nov;45(6):1344-53.
7
Comparative analysis of multiple inducible phages from Mannheimia haemolytica.
BMC Microbiol. 2015 Aug 30;15:175. doi: 10.1186/s12866-015-0494-5.
9
Phage Phenomics: Physiological Approaches to Characterize Novel Viral Proteins.
J Vis Exp. 2015 Jun 11(100):e52854. doi: 10.3791/52854.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验