Casjens Sherwood R, Grose Julianne H
Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, University of Utah, Salt Lake City, UT 84112, United States; Department of Biology, University of Utah, Salt Lake City, UT 84112, United States.
Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT 84602, United States.
Virology. 2016 Sep;496:255-276. doi: 10.1016/j.virol.2016.05.022. Epub 2016 Jun 30.
We identified 9371 tailed phage prophages of 20 known types in reported complete genome sequences of 3298 bacteria in the Salmonella genus. These include 4758 P2 type and 744 P22 type prophages. The latter prophage types were found in the genome sequences of 127 and 24 bacterial host genera, increasing the known host ranges of phages in these groups by 114 and 20 genera, respectively. These prophage nucleotide sequences displayed much more diversity than was previously known from the 48 P2 and 24 P22 type authentic phages whose genomes have been sequenced. More detailed analysis of these prophage sequences indicated that major capsid protein (MCP) gene exchange between tailed phage clusters or types is extremely rare and that P22 prophage-encoded tailspikes correspond perfectly with their hosts' surface polysaccharide structure; thus, MCP and tailspike sequences accurately predict tailed phage type (and thus lifestyle) and host cell surface polysaccharide structure, respectively.
我们在沙门氏菌属3298种细菌的已报道完整基因组序列中鉴定出9371个属于20种已知类型的有尾噬菌体原噬菌体。其中包括4758个P2型和744个P22型原噬菌体。后一种原噬菌体类型分别在127个和24个细菌宿主属的基因组序列中被发现,使这些噬菌体组中已知的宿主范围分别增加了114个和20个属。这些原噬菌体核苷酸序列显示出比之前已测序基因组的48个P2型和24个P22型正宗噬菌体更多的多样性。对这些原噬菌体序列的更详细分析表明,有尾噬菌体簇或类型之间的主要衣壳蛋白(MCP)基因交换极其罕见,并且P22原噬菌体编码的尾刺与其宿主的表面多糖结构完美对应;因此,MCP和尾刺序列分别准确预测有尾噬菌体类型(进而预测其生活方式)和宿主细胞表面多糖结构。