Suppr超能文献

用于腕部佩戴式加速度计数据的随机森林活动分类器的现场评估。

Field evaluation of a random forest activity classifier for wrist-worn accelerometer data.

作者信息

Pavey Toby G, Gilson Nicholas D, Gomersall Sjaan R, Clark Bronwyn, Trost Stewart G

机构信息

School of Exercise and Nutrition Sciences, Queensland University of Technology, Australia; School of Human Movement and Nutrition Sciences, The University of Queensland, Australia.

School of Human Movement and Nutrition Sciences, The University of Queensland, Australia.

出版信息

J Sci Med Sport. 2017 Jan;20(1):75-80. doi: 10.1016/j.jsams.2016.06.003. Epub 2016 Jun 23.

Abstract

OBJECTIVES

Wrist-worn accelerometers are convenient to wear and associated with greater wear-time compliance. Previous work has generally relied on choreographed activity trials to train and test classification models. However, validity in free-living contexts is starting to emerge. Study aims were: (1) train and test a random forest activity classifier for wrist accelerometer data; and (2) determine if models trained on laboratory data perform well under free-living conditions.

DESIGN

Twenty-one participants (mean age=27.6±6.2) completed seven lab-based activity trials and a 24h free-living trial (N=16).

METHODS

Participants wore a GENEActiv monitor on the non-dominant wrist. Classification models recognising four activity classes (sedentary, stationary+, walking, and running) were trained using time and frequency domain features extracted from 10-s non-overlapping windows. Model performance was evaluated using leave-one-out-cross-validation. Models were implemented using the randomForest package within R. Classifier accuracy during the 24h free living trial was evaluated by calculating agreement with concurrently worn activPAL monitors.

RESULTS

Overall classification accuracy for the random forest algorithm was 92.7%. Recognition accuracy for sedentary, stationary+, walking, and running was 80.1%, 95.7%, 91.7%, and 93.7%, respectively for the laboratory protocol. Agreement with the activPAL data (stepping vs. non-stepping) during the 24h free-living trial was excellent and, on average, exceeded 90%. The ICC for stepping time was 0.92 (95% CI=0.75-0.97). However, sensitivity and positive predictive values were modest. Mean bias was 10.3min/d (95% LOA=-46.0 to 25.4min/d).

CONCLUSIONS

The random forest classifier for wrist accelerometer data yielded accurate group-level predictions under controlled conditions, but was less accurate at identifying stepping verse non-stepping behaviour in free living conditions Future studies should conduct more rigorous field-based evaluations using observation as a criterion measure.

摘要

目的

腕部佩戴的加速度计佩戴方便,且佩戴时间的依从性更高。以往的研究通常依赖于编排好的活动试验来训练和测试分类模型。然而,在自由生活环境中的有效性正开始显现。研究目的为:(1)训练并测试用于腕部加速度计数据的随机森林活动分类器;(2)确定在实验室数据上训练的模型在自由生活条件下的表现是否良好。

设计

21名参与者(平均年龄 = 27.6±6.2)完成了7项基于实验室的活动试验和一项24小时自由生活试验(N = 16)。

方法

参与者在非优势手腕上佩戴一台GENEActiv监测器。使用从10秒非重叠窗口中提取的时域和频域特征,训练识别四个活动类别(久坐、静止+、步行和跑步)的分类模型。使用留一法交叉验证评估模型性能。模型使用R语言中的randomForest包实现。通过计算与同时佩戴的activPAL监测器的一致性,评估24小时自由生活试验期间分类器的准确性。

结果

随机森林算法的总体分类准确率为92.7%。对于实验室方案,久坐、静止+、步行和跑步的识别准确率分别为80.1%、95.7%、91.7%和93.7%。在24小时自由生活试验期间,与activPAL数据(步数与非步数)的一致性非常好,平均超过90%。步数时间的组内相关系数为0.92(95%可信区间 = 0.75 - 0.97)。然而,敏感性和阳性预测值一般。平均偏差为10.3分钟/天(95% 一致性界限 = -46.0至25.4分钟/天)。

结论

用于腕部加速度计数据的随机森林分类器在受控条件下产生了准确的组水平预测,但在识别自由生活条件下的步数与非步数行为时准确性较低。未来的研究应以观察作为标准测量方法,进行更严格的基于现场的评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验