Suppr超能文献

mORAL:一种使用腕戴式惯性传感器在自然环境中推断口腔卫生行为的健康模型。

mORAL: An Health Model for Inferring Oral Hygiene Behaviors in-the-wild Using Wrist-worn Inertial Sensors.

作者信息

Akther Sayma, Saleheen Nazir, Samiei Shahin Alan, Shetty Vivek, Ertin Emre, Kumar Santosh

机构信息

University of Memphis.

University of California, Los Angeles.

出版信息

Proc ACM Interact Mob Wearable Ubiquitous Technol. 2019 Mar;3(1). doi: 10.1145/3314388. Epub 2019 Mar 29.

Abstract

We address the open problem of reliably detecting oral health behaviors passively from wrist-worn inertial sensors. We present our model named (pronounced ) for detecting brushing and flossing behaviors, without the use of instrumented toothbrushes so that the model is applicable to brushing with still prevalent manual toothbrushes. We show that for detecting rare daily events such as toothbrushing, adopting a model that is based on identifying candidate windows based on events, rather than fixed-length timeblocks, leads to significantly higher performance. Trained and tested on 2,797 hours of sensor data collected over 192 days on 25 participants (using video annotations for ground truth labels), our brushing model achieves 100% median recall with a false positive rate of one event in every nine days of sensor wearing. The average error in estimating the start/end times of the detected event is 4.1% of the interval of the actual toothbrushing event.

摘要

我们解决了一个开放性问题,即如何通过佩戴在手腕上的惯性传感器被动可靠地检测口腔健康行为。我们提出了名为(发音为 )的模型,用于检测刷牙和使用牙线的行为,该模型不使用装有仪器的牙刷,从而适用于仍广泛使用的手动牙刷刷牙情况。我们表明,对于检测诸如刷牙等罕见的日常事件,采用基于根据事件识别候选窗口而非固定长度时间块的模型,会带来显著更高的性能。在25名参与者192天内收集的2797小时传感器数据上进行训练和测试(使用视频注释作为地面真值标签),我们的刷牙模型实现了100%的中位数召回率,误报率为每九天一次事件。检测到的事件的开始/结束时间估计的平均误差为实际刷牙事件间隔的4.1%。

相似文献

1
mORAL: An Health Model for Inferring Oral Hygiene Behaviors in-the-wild Using Wrist-worn Inertial Sensors.
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2019 Mar;3(1). doi: 10.1145/3314388. Epub 2019 Mar 29.
2
mTeeth: Identifying Brushing Teeth Surfaces Using Wrist-Worn Inertial Sensors.
Proc ACM Interact Mob Wearable Ubiquitous Technol. 2021 Jun;5(2). doi: 10.1145/3463494. Epub 2021 Jun 24.
4
Interdental brushing for the prevention and control of periodontal diseases and dental caries in adults.
Cochrane Database Syst Rev. 2013 Dec 18(12):CD009857. doi: 10.1002/14651858.CD009857.pub2.
5
Randomised methodology development study to investigate plaque removal efficacy of manual toothbrushes.
J Dent. 2022 Jan;116:103830. doi: 10.1016/j.jdent.2021.103830. Epub 2021 Oct 21.
6
Toothbrushing and flossing behaviour in young adults--a video observation.
Clin Oral Investig. 2015 May;19(4):851-8. doi: 10.1007/s00784-014-1306-2. Epub 2014 Sep 4.
7
WITHDRAWN: Interdental brushing for the prevention and control of periodontal diseases and dental caries in adults.
Cochrane Database Syst Rev. 2019 Apr 24;4(4):CD009857. doi: 10.1002/14651858.CD009857.pub3.
8
Oral hygiene interventions for people with intellectual disabilities.
Cochrane Database Syst Rev. 2019 May 31;5(5):CD012628. doi: 10.1002/14651858.CD012628.pub2.
10
Oral cleanliness in daily users of powered vs. manual toothbrushes - a cross-sectional study.
BMC Oral Health. 2019 May 29;19(1):96. doi: 10.1186/s12903-019-0790-9.

引用本文的文献

2
An Overview of Sensors, Design and Healthcare Challenges in Smart Homes: Future Design Questions.
Healthcare (Basel). 2021 Oct 5;9(10):1329. doi: 10.3390/healthcare9101329.

本文引用的文献

1
mCerebrum: A Mobile Sensing Software Platform for Development and Validation of Digital Biomarkers and Interventions.
Proc Int Conf Embed Netw Sens Syst. 2017 Nov;2017. doi: 10.1145/3131672.3131694.
2
Re-architecting oral healthcare for the 21st century.
J Dent. 2018 Jul;74 Suppl 1(Suppl 1):S10-S14. doi: 10.1016/j.jdent.2018.04.017.
3
A Practical Approach for Recognizing Eating Moments with Wrist-Mounted Inertial Sensing.
Proc ACM Int Conf Ubiquitous Comput. 2015 Sep;2015:1029-1040. doi: 10.1145/2750858.2807545.
4
Field evaluation of a random forest activity classifier for wrist-worn accelerometer data.
J Sci Med Sport. 2017 Jan;20(1):75-80. doi: 10.1016/j.jsams.2016.06.003. Epub 2016 Jun 23.
5
RisQ: Recognizing Smoking Gestures with Inertial Sensors on a Wristband.
MobiSys. 2014 Jun;2014:149-161. doi: 10.1145/2594368.2594379.
7
Assessing the Availability of Users to Engage in Just-in-Time Intervention in the Natural Environment.
Proc ACM Int Conf Ubiquitous Comput. 2014;2014:909-920. doi: 10.1145/2632048.2636082.
8
A random forest classifier for the prediction of energy expenditure and type of physical activity from wrist and hip accelerometers.
Physiol Meas. 2014 Nov;35(11):2191-203. doi: 10.1088/0967-3334/35/11/2191. Epub 2014 Oct 23.
9
Activity recognition using a single accelerometer placed at the wrist or ankle.
Med Sci Sports Exerc. 2013 Nov;45(11):2193-203. doi: 10.1249/MSS.0b013e31829736d6.
10
Toothbrushing region detection using three-axis accelerometer and magnetic sensor.
IEEE Trans Biomed Eng. 2012 Mar;59(3):872-81. doi: 10.1109/TBME.2011.2181369. Epub 2011 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验