Cuevas Daniel A, Edirisinghe Janaka, Henry Chris S, Overbeek Ross, O'Connell Taylor G, Edwards Robert A
Computational Science Research Center, San Diego State University, San Diego CA, USA.
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne IL, USA.
Front Microbiol. 2016 Jun 17;7:907. doi: 10.3389/fmicb.2016.00907. eCollection 2016.
Microbiological studies are increasingly relying on in silico methods to perform exploration and rapid analysis of genomic data, and functional genomics studies are supplemented by the new perspectives that genome-scale metabolic models offer. A mathematical model consisting of a microbe's entire metabolic map can be rapidly determined from whole-genome sequencing and annotating the genomic material encoded in its DNA. Flux-balance analysis (FBA), a linear programming technique that uses metabolic models to predict the phenotypic responses imposed by environmental elements and factors, is the leading method to simulate and manipulate cellular growth in silico. However, the process of creating an accurate model to use in FBA consists of a series of steps involving a multitude of connections between bioinformatics databases, enzyme resources, and metabolic pathways. We present the methodology and procedure to obtain a metabolic model using PyFBA, an extensible Python-based open-source software package aimed to provide a platform where functional annotations are used to build metabolic models (http://linsalrob.github.io/PyFBA). Backed by the Model SEED biochemistry database, PyFBA contains methods to reconstruct a microbe's metabolic map, run FBA upon different media conditions, and gap-fill its metabolism. The extensibility of PyFBA facilitates novel techniques in creating accurate genome-scale metabolic models.
微生物学研究越来越依赖于计算机方法来对基因组数据进行探索和快速分析,功能基因组学研究则因基因组规模代谢模型提供的新视角而得到补充。一个由微生物的完整代谢图谱组成的数学模型可以通过对全基因组进行测序并注释其DNA中编码的基因组物质快速确定。通量平衡分析(FBA)是一种线性规划技术,它利用代谢模型来预测环境因素所施加的表型反应,是在计算机上模拟和操纵细胞生长的主要方法。然而,创建一个用于FBA的准确模型的过程包括一系列步骤,涉及生物信息学数据库、酶资源和代谢途径之间的众多联系。我们展示了使用PyFBA获得代谢模型的方法和步骤,PyFBA是一个基于Python的可扩展开源软件包,旨在提供一个利用功能注释构建代谢模型的平台(http://linsalrob.github.io/PyFBA)。在Model SEED生物化学数据库的支持下,PyFBA包含重建微生物代谢图谱、在不同培养基条件下运行FBA以及填补其代谢缺口的方法。PyFBA的可扩展性有助于创造准确的基因组规模代谢模型的新技术。