Suppr超能文献

在基因组尺度上重建和模拟大肠杆菌中的蛋白质转运与区室化

Reconstruction and modeling protein translocation and compartmentalization in Escherichia coli at the genome-scale.

作者信息

Liu Joanne K, O'Brien Edward J, Lerman Joshua A, Zengler Karsten, Palsson Bernhard O, Feist Adam M

出版信息

BMC Syst Biol. 2014 Sep 18;8:110. doi: 10.1186/s12918-014-0110-6.

Abstract

BACKGROUND

Membranes play a crucial role in cellular functions. Membranes provide a physical barrier, control the trafficking of substances entering and leaving the cell, and are a major determinant of cellular ultra-structure. In addition, components embedded within the membrane participate in cell signaling, energy transduction, and other critical cellular functions. All these processes must share the limited space in the membrane; thus it represents a notable constraint on cellular functions. Membrane- and location-based processes have not yet been reconstructed and explicitly integrated into genome-scale models.

RESULTS

The recent genome-scale model of metabolism and protein expression in Escherichia coli (called a ME-model) computes the complete composition of the proteome required to perform whole cell functions. Here we expand the ME-model to include (1) a reconstruction of protein translocation pathways, (2) assignment of all cellular proteins to one of four compartments (cytoplasm, inner membrane, periplasm, and outer membrane) and a translocation pathway, (3) experimentally determined translocase catalytic and porin diffusion rates, and (4) a novel membrane constraint that reflects cell morphology. Comparison of computations performed with this expanded ME-model, named iJL1678-ME, against available experimental data reveals that the model accurately describes translocation pathway expression and the functional proteome by compartmentalized mass.

CONCLUSION

iJL1678-ME enables the computation of cellular phenotypes through an integrated computation of proteome composition, abundance, and activity in four cellular compartments (cytoplasm, periplasm, inner and outer membrane). Reconstruction and validation of the model has demonstrated that the iJL1678-ME is capable of capturing the functional content of membranes, cellular compartment-specific composition, and that it can be utilized to examine the effect of perturbing an expanded set of network components. iJL1678-ME takes a notable step towards the inclusion of cellular ultra-structure in genome-scale models.

摘要

背景

膜在细胞功能中起着至关重要的作用。膜提供了一个物理屏障,控制物质进出细胞的运输,并且是细胞超微结构的主要决定因素。此外,嵌入膜内的成分参与细胞信号传导、能量转导和其他关键的细胞功能。所有这些过程必须共享膜内有限的空间;因此,这对细胞功能构成了显著的限制。基于膜和位置的过程尚未被重建并明确整合到基因组规模模型中。

结果

最近的大肠杆菌代谢和蛋白质表达基因组规模模型(称为ME模型)计算了执行全细胞功能所需的蛋白质组的完整组成。在这里,我们扩展了ME模型,以包括:(1)蛋白质转运途径的重建;(2)将所有细胞蛋白质分配到四个区室(细胞质、内膜、周质和外膜)之一以及一条转运途径;(3)实验确定的转位酶催化速率和孔蛋白扩散速率;(4)一种反映细胞形态的新型膜约束。将使用这个扩展的ME模型(命名为iJL1678-ME)进行的计算与可用的实验数据进行比较,结果表明该模型通过分区质量准确地描述了转运途径表达和功能蛋白质组。

结论

iJL1678-ME能够通过对四个细胞区室(细胞质、周质、内膜和外膜)中蛋白质组组成、丰度和活性的综合计算来计算细胞表型。该模型的重建和验证表明,iJL1678-ME能够捕捉膜的功能内容、细胞区室特异性组成,并且可用于检查扰动一组扩展的网络组件的影响。iJL1678-ME朝着在基因组规模模型中纳入细胞超微结构迈出了重要一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd59/4177180/c0f52c64e6d3/12918_2014_110_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验