Suppr超能文献

ICON-GEMs:通过系统生物学揭示基于共表达网络的基因组尺度代谢模型的整合

ICON-GEMs: integration of co-expression network in genome-scale metabolic models, shedding light through systems biology.

机构信息

Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.

Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand.

出版信息

BMC Bioinformatics. 2023 Dec 21;24(1):492. doi: 10.1186/s12859-023-05599-0.

Abstract

BACKGROUND

Flux Balance Analysis (FBA) is a key metabolic modeling method used to simulate cellular metabolism under steady-state conditions. Its simplicity and versatility have led to various strategies incorporating transcriptomic and proteomic data into FBA, successfully predicting flux distribution and phenotypic results. However, despite these advances, the untapped potential lies in leveraging gene-related connections like co-expression patterns for valuable insights.

RESULTS

To fill this gap, we introduce ICON-GEMs, an innovative constraint-based model to incorporate gene co-expression network into the FBA model, facilitating more precise determination of flux distributions and functional pathways. In this study, transcriptomic data from both Escherichia coli and Saccharomyces cerevisiae were integrated into their respective genome-scale metabolic models. A comprehensive gene co-expression network was constructed as a global view of metabolic mechanism of the cell. By leveraging quadratic programming, we maximized the alignment between pairs of reaction fluxes and the correlation of their corresponding genes in the co-expression network. The outcomes notably demonstrated that ICON-GEMs outperformed existing methodologies in predictive accuracy. Flux variabilities over subsystems and functional modules also demonstrate promising results. Furthermore, a comparison involving different types of biological networks, including protein-protein interactions and random networks, reveals insights into the utilization of the co-expression network in genome-scale metabolic engineering.

CONCLUSION

ICON-GEMs introduce an innovative constrained model capable of simultaneous integration of gene co-expression networks, ready for board application across diverse transcriptomic data sets and multiple organisms. It is freely available as open-source at https://github.com/ThummaratPaklao/ICOM-GEMs.git .

摘要

背景

通量平衡分析(FBA)是一种用于模拟稳态条件下细胞代谢的关键代谢建模方法。其简单性和通用性导致了各种策略的出现,即将转录组和蛋白质组数据纳入 FBA 中,成功预测了通量分布和表型结果。然而,尽管取得了这些进展,但仍有未被挖掘的潜力,即利用基因相关的联系,如共表达模式,以获得有价值的见解。

结果

为了填补这一空白,我们引入了 ICON-GEMs,这是一种创新的基于约束的模型,将基因共表达网络纳入 FBA 模型中,有助于更精确地确定通量分布和功能途径。在这项研究中,我们整合了来自大肠杆菌和酿酒酵母的转录组数据到各自的基因组尺度代谢模型中。构建了一个全面的基因共表达网络,作为细胞代谢机制的全局视图。通过利用二次规划,我们最大限度地将反应通量对及其在共表达网络中对应基因的相关性进行了对齐。结果显著表明,ICON-GEMs 在预测准确性方面优于现有方法。子系统和功能模块的通量变化也显示出有希望的结果。此外,涉及不同类型的生物网络(包括蛋白质-蛋白质相互作用和随机网络)的比较揭示了在基因组尺度代谢工程中利用共表达网络的见解。

结论

ICON-GEMs 引入了一种创新的约束模型,能够同时整合基因共表达网络,随时准备在不同的转录组数据集和多个生物体中广泛应用。它可在 https://github.com/ThummaratPaklao/ICOM-GEMs.git 上免费获取开源版本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c8a1/10740312/f8c42beb3582/12859_2023_5599_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验