Birolli Willian G, Alvarenga Natália, Seleghim Mirna H R, Porto André L M
Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, J. Santa Angelina, 13563-120, São Carlos, SP, Brazil.
Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Carlos, Via Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil.
Mar Biotechnol (NY). 2016 Aug;18(4):511-20. doi: 10.1007/s10126-016-9710-z. Epub 2016 Jul 6.
Esfenvalerate biodegradation by marine-derived fungi is reported here. Esfenvalerate (S,S-fenvalerate) and its main metabolites [3-phenoxybenzaldehyde (PBAld), 3-phenoxybenzoic acid (PBAc), 3-phenoxybenzyl alcohol (PBAlc), and 2-(4-chlorophenyl)-3-methylbutyric acid (CLAc)] were quantitatively analyzed by a validated method in triplicate experiments. All the strains (Penicillium raistrickii CBMAI 931, Aspergillus sydowii CBMAI 935, Cladosporium sp. CBMAI 1237, Microsphaeropsis sp. CBMAI 1675, Acremonium sp. CBMAI 1676, Westerdykella sp. CBMAI 1679, and Cladosporium sp. CBMAI 1678) were able to degrade esfenvalerate, however, with different efficiencies. Initially, 100 mg L(-1) esfenvalerate (Sumidan 150SC) was added to each culture in 3 % malt liquid medium. Residual esfenvalerate (64.8-95.2 mg L(-1)) and the concentrations of PBAc (0.5-7.4 mg L(-1)), ClAc (0.1-7.5 mg L(-1)), and PBAlc (0.2 mg L(-1)) were determined after 14 days. In experiments after 7, 14, 21, and 28 days of biodegradation with the three most efficient strains, increasing concentrations of the toxic compounds PBAc (2.7-16.6 mg L(-1), after 28 days) and CLAc (6.6-13.4 mg L(-1), after 28 days) were observed. A biodegradation pathway was proposed, based on HPLC-ToF results. The biodegradation pathway includes PBAld, PBAc, PBAlc, ClAc, 2-hydroxy-2-(3-phenoxyphenyl)acetonitrile, 3-(hydroxyphenoxy)benzoic acid, and methyl 3-phenoxy benzoate. Marine-derived fungi were able to biodegrade esfenvalerate in a commercial formulation and showed their potential for future bioremediation studies in contaminated soils and water bodies.
本文报道了海洋来源真菌对氰戊菊酯的生物降解情况。采用经过验证的方法对氰戊菊酯(S,S-氰戊菊酯)及其主要代谢产物[3-苯氧基苯甲醛(PBAld)、3-苯氧基苯甲酸(PBAc)、3-苯氧基苄醇(PBAlc)和2-(4-氯苯基)-3-甲基丁酸(CLAc)]进行了三次重复实验的定量分析。所有菌株(雷斯垂克青霉CBMAI 931、西多曲霉CBMAI 935、枝孢属CBMAI 1237、拟球壳孢属CBMAI 1675、顶孢霉属CBMAI 1676、韦斯特戴克氏菌属CBMAI 1679和枝孢属CBMAI 1678)都能够降解氰戊菊酯,不过降解效率有所不同。最初,在3%麦芽液体培养基中向每种培养物添加100 mg L⁻¹氰戊菊酯(速灭杀丁150SC)。14天后测定残余氰戊菊酯(64.8 - 95.2 mg L⁻¹)以及PBAc(0.5 - 7.4 mg L⁻¹)、CLAc(0.1 - 7.5 mg L⁻¹)和PBAlc(0.2 mg L⁻¹)的浓度。在用三种降解效率最高的菌株进行7、14、21和28天生物降解的实验中,观察到有毒化合物PBAc(28天后为2.7 - 16.6 mg L⁻¹)和CLAc(28天后为6.6 - 13.4 mg L⁻¹)的浓度不断增加。基于高效液相色谱-飞行时间质谱(HPLC-ToF)结果提出了一条生物降解途径。该生物降解途径包括PBAld、PBAc、PBAlc、CLAc、2-羟基-2-(3-苯氧基苯基)乙腈、3-(羟基苯氧基)苯甲酸和3-苯氧基苯甲酸甲酯。海洋来源真菌能够对商业制剂中的氰戊菊酯进行生物降解,并显示出其在未来受污染土壤和水体生物修复研究中的潜力。