Suppr超能文献

幽门螺杆菌空泡毒素A的一种非寡聚化突变形式可用于p33结构域的结构分析。

A Nonoligomerizing Mutant Form of Helicobacter pylori VacA Allows Structural Analysis of the p33 Domain.

作者信息

González-Rivera Christian, Campbell Anne M, Rutherford Stacey A, Pyburn Tasia M, Foegeding Nora J, Barke Theresa L, Spiller Benjamin W, McClain Mark S, Ohi Melanie D, Lacy D Borden, Cover Timothy L

机构信息

Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.

Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.

出版信息

Infect Immun. 2016 Aug 19;84(9):2662-70. doi: 10.1128/IAI.00254-16. Print 2016 Sep.

Abstract

Helicobacter pylori secretes a pore-forming VacA toxin that has structural features and activities substantially different from those of other known bacterial toxins. VacA can assemble into multiple types of water-soluble flower-shaped oligomeric structures, and most VacA activities are dependent on its capacity to oligomerize. The 88-kDa secreted VacA protein can undergo limited proteolysis to yield two domains, designated p33 and p55. The p33 domain is required for membrane channel formation and intracellular toxic activities, and the p55 domain has an important role in mediating VacA binding to cells. Previous studies showed that the p55 domain has a predominantly β-helical structure, but no structural data are available for the p33 domain. We report here the purification and analysis of a nonoligomerizing mutant form of VacA secreted by H. pylori The nonoligomerizing 88-kDa mutant protein retains the capacity to enter host cells but lacks detectable toxic activity. Analysis of crystals formed by the monomeric protein reveals that the β-helical structure of the p55 domain extends into the C-terminal portion of p33. Fitting the p88 structural model into an electron microscopy map of hexamers formed by wild-type VacA (predicted to be structurally similar to VacA membrane channels) reveals that p55 and the β-helical segment of p33 localize to peripheral arms but do not occupy the central region of the hexamers. We propose that the amino-terminal portion of p33 is unstructured when VacA is in a monomeric form and that it undergoes a conformational change during oligomer assembly.

摘要

幽门螺杆菌分泌一种形成孔道的VacA毒素,其结构特征和活性与其他已知细菌毒素有很大不同。VacA可组装成多种类型的水溶性花状寡聚结构,并且大多数VacA活性取决于其寡聚化能力。分泌的88 kDa VacA蛋白可进行有限的蛋白水解,产生两个结构域,分别命名为p33和p55。p33结构域是形成膜通道和细胞内毒性活性所必需的,而p55结构域在介导VacA与细胞结合中起重要作用。先前的研究表明,p55结构域主要具有β-螺旋结构,但尚无p33结构域的结构数据。我们在此报告幽门螺杆菌分泌的一种非寡聚化突变形式VacA的纯化和分析。这种非寡聚化的88 kDa突变蛋白保留了进入宿主细胞的能力,但缺乏可检测到的毒性活性。对由单体蛋白形成的晶体的分析表明,p55结构域的β-螺旋结构延伸到p33的C末端部分。将p88结构模型拟合到野生型VacA形成的六聚体的电子显微镜图谱中(预计在结构上与VacA膜通道相似),发现p55和p33的β-螺旋片段定位于外周臂,但不占据六聚体的中心区域。我们提出,当VacA处于单体形式时,p33的氨基末端部分是无结构的,并且在寡聚体组装过程中会发生构象变化。

相似文献

1
A Nonoligomerizing Mutant Form of Helicobacter pylori VacA Allows Structural Analysis of the p33 Domain.
Infect Immun. 2016 Aug 19;84(9):2662-70. doi: 10.1128/IAI.00254-16. Print 2016 Sep.
2
Structural organization of membrane-inserted hexamers formed by Helicobacter pylori VacA toxin.
Mol Microbiol. 2016 Oct;102(1):22-36. doi: 10.1111/mmi.13443. Epub 2016 Jul 8.
3
Analysis of a beta-helical region in the p55 domain of Helicobacter pylori vacuolating toxin.
BMC Microbiol. 2010 Feb 23;10:60. doi: 10.1186/1471-2180-10-60.
4
Structural analysis of the oligomeric states of Helicobacter pylori VacA toxin.
J Mol Biol. 2013 Feb 8;425(3):524-35. doi: 10.1016/j.jmb.2012.11.020. Epub 2012 Nov 20.
5
Functional properties of the p33 and p55 domains of the Helicobacter pylori vacuolating cytotoxin.
J Biol Chem. 2005 Jun 3;280(22):21107-14. doi: 10.1074/jbc.M501042200. Epub 2005 Apr 6.
6
Reconstitution of Helicobacter pylori VacA toxin from purified components.
Biochemistry. 2010 Jul 13;49(27):5743-52. doi: 10.1021/bi100618g.
8
Cryo-EM Analysis Reveals Structural Basis of Helicobacter pylori VacA Toxin Oligomerization.
J Mol Biol. 2019 May 3;431(10):1956-1965. doi: 10.1016/j.jmb.2019.03.029. Epub 2019 Apr 5.
10
Determinants of Raft Partitioning of the Helicobacter pylori Pore-Forming Toxin VacA.
Infect Immun. 2018 Apr 23;86(5). doi: 10.1128/IAI.00872-17. Print 2018 May.

引用本文的文献

1
Taurine modulates host cell responses to VacA toxin.
Infect Immun. 2024 Aug 13;92(8):e0022424. doi: 10.1128/iai.00224-24. Epub 2024 Jul 8.
3
Structural Analysis of Membrane-associated Forms of Helicobacter pylori VacA Toxin.
J Mol Biol. 2024 Feb 15;436(4):168432. doi: 10.1016/j.jmb.2023.168432. Epub 2023 Dec 30.
5
Treatment with -derived VacA attenuates allergic airway disease.
Front Immunol. 2023 Jan 24;14:1092801. doi: 10.3389/fimmu.2023.1092801. eCollection 2023.
6
Functional Properties of Oligomeric and Monomeric Forms of Helicobacter pylori VacA Toxin.
Infect Immun. 2021 Nov 16;89(12):e0034821. doi: 10.1128/IAI.00348-21. Epub 2021 Sep 20.
7
Functional Properties of Helicobacter pylori VacA Toxin m1 and m2 Variants.
Infect Immun. 2020 May 20;88(6). doi: 10.1128/IAI.00032-20.
8
Cryo-EM Analysis Reveals Structural Basis of Helicobacter pylori VacA Toxin Oligomerization.
J Mol Biol. 2019 May 3;431(10):1956-1965. doi: 10.1016/j.jmb.2019.03.029. Epub 2019 Apr 5.
9
Cryo-EM structures of vacuolating cytotoxin A oligomeric assemblies at near-atomic resolution.
Proc Natl Acad Sci U S A. 2019 Apr 2;116(14):6800-6805. doi: 10.1073/pnas.1821959116. Epub 2019 Mar 20.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
An Overview of Helicobacter pylori VacA Toxin Biology.
Toxins (Basel). 2016 Jun 3;8(6):173. doi: 10.3390/toxins8060173.
3
Helicobacter pylori Diversity and Gastric Cancer Risk.
mBio. 2016 Jan 26;7(1):e01869-15. doi: 10.1128/mBio.01869-15.
4
Growth phase-dependent composition of the Helicobacter pylori exoproteome.
J Proteomics. 2016 Jan 1;130:94-107. doi: 10.1016/j.jprot.2015.08.025. Epub 2015 Sep 9.
5
Analysis of surface-exposed outer membrane proteins in Helicobacter pylori.
J Bacteriol. 2014 Jul;196(13):2455-71. doi: 10.1128/JB.01768-14. Epub 2014 Apr 25.
6
Structural and functional aspects of the Helicobacter pylori secretome.
World J Gastroenterol. 2014 Feb 14;20(6):1402-23. doi: 10.3748/wjg.v20.i6.1402.
7
Role of connexin 43 in Helicobacter pylori VacA-induced cell death.
Infect Immun. 2014 Jan;82(1):423-32. doi: 10.1128/IAI.00827-13. Epub 2013 Nov 4.
9
Structural analysis of the oligomeric states of Helicobacter pylori VacA toxin.
J Mol Biol. 2013 Feb 8;425(3):524-35. doi: 10.1016/j.jmb.2012.11.020. Epub 2012 Nov 20.
10
Remodeling the host environment: modulation of the gastric epithelium by the Helicobacter pylori vacuolating toxin (VacA).
Front Cell Infect Microbiol. 2012 Mar 27;2:37. doi: 10.3389/fcimb.2012.00037. eCollection 2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验