Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
J Mol Biol. 2024 Feb 15;436(4):168432. doi: 10.1016/j.jmb.2023.168432. Epub 2023 Dec 30.
Helicobacter pylori colonizes the stomach in about half of the human population, leading to an increased risk of peptic ulcer disease and gastric cancer. H. pylori secretes an 88 kDa VacA toxin that contributes to pathogenesis. VacA assembles into oligomeric complexes in solution and forms anion-selective channels in cell membranes. Cryo-electron microscopy (cryo-EM) analyses of VacA oligomers in solution provided insights into VacA oligomerization but failed to reveal the structure of the hydrophobic N-terminal region predicted to be a pore-forming domain. In this study, we incubated VacA with liposomes and used single particle cryo-EM to analyze detergent-extracted VacA oligomers. A 3D structure of detergent-solubilized VacA hexamers revealed the presence of six α-helices extending from the center of the oligomers, a feature not observed in previous studies of water-soluble VacA oligomers. Cryo-electron tomography analysis and 2D averages of VacA associated with liposomes confirmed that central regions of the membrane-associated VacA oligomers can insert into the lipid bilayer. However, insertion is heterogenous, with some membrane-associated oligomers appearing only partially inserted and others sitting on top of the bilayer. These studies indicate that VacA undergoes a conformational change when contacting the membrane and reveal an α-helical region positioned to extend into the membrane. Although the reported VacA 3D structure does not represent a selective anion channel, our combined single particle 3D analysis, cryo-electron tomography, and modeling allow us to propose a model for the structural organization of the VacA N-terminus in the context of a hexamer as it inserts into the membrane.
幽门螺杆菌在大约一半的人类人口中定植于胃部,导致消化性溃疡病和胃癌的风险增加。H. pylori 分泌一种 88 kDa 的 VacA 毒素,有助于发病机制。VacA 在溶液中组装成寡聚体复合物,并在细胞膜中形成阴离子选择性通道。VacA 寡聚体在溶液中的低温电子显微镜(cryo-EM)分析提供了对 VacA 寡聚化的深入了解,但未能揭示预测为形成孔结构域的疏水性 N 端区域的结构。在这项研究中,我们将 VacA 与脂质体孵育,并使用单颗粒低温电子显微镜分析提取的去污剂中的 VacA 寡聚体。去污剂溶解的 VacA 六聚体的 3D 结构揭示了存在从寡聚体中心延伸的六个α-螺旋,这是以前水溶性 VacA 寡聚体研究中未观察到的特征。低温电子断层扫描分析和与脂质体相关的 VacA 的 2D 平均值证实,膜相关 VacA 寡聚体的中心区域可以插入脂质双层。然而,插入是异质的,一些与膜相关的寡聚体似乎仅部分插入,而其他寡聚体则位于双层之上。这些研究表明,VacA 在与膜接触时会发生构象变化,并揭示了一个位于延伸到膜中的α-螺旋区域。尽管报道的 VacA 3D 结构不代表选择性阴离子通道,但我们的单颗粒 3D 分析、低温电子断层扫描和建模的综合分析使我们能够提出一种在插入膜时 VacA N 端结构组织的模型。