Suppr超能文献

一种使用超声成像确定空间变化动脉顺应性的逆向方法。

An inverse approach to determining spatially varying arterial compliance using ultrasound imaging.

作者信息

Mcgarry Matthew, Li Ronny, Apostolakis Iason, Nauleau Pierre, Konofagou Elisa E

机构信息

Department of Biomedical Engineering, Columbia University, New York, NY, USA. Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.

出版信息

Phys Med Biol. 2016 Aug 7;61(15):5486-507. doi: 10.1088/0031-9155/61/15/5486. Epub 2016 Jul 6.

Abstract

The mechanical properties of arteries are implicated in a wide variety of cardiovascular diseases, many of which are expected to involve a strong spatial variation in properties that can be depicted by diagnostic imaging. A pulse wave inverse problem (PWIP) is presented, which can produce spatially resolved estimates of vessel compliance from ultrasound measurements of the vessel wall displacements. The 1D equations governing pulse wave propagation in a flexible tube are parameterized by the spatially varying properties, discrete cosine transform components of the inlet pressure boundary conditions, viscous loss constant and a resistance outlet boundary condition. Gradient descent optimization is used to fit displacements from the model to the measured data by updating the model parameters. Inversion of simulated data showed that the PWIP can accurately recover the correct compliance distribution and inlet pressure under realistic conditions, even under high simulated measurement noise conditions. Silicone phantoms with known compliance contrast were imaged with a clinical ultrasound system. The PWIP produced spatially and quantitatively accurate maps of the phantom compliance compared to independent static property estimates, and the known locations of stiff inclusions (which were as small as 7 mm). The PWIP is necessary for these phantom experiments as the spatiotemporal resolution, measurement noise and compliance contrast does not allow accurate tracking of the pulse wave velocity using traditional approaches (e.g. 50% upstroke markers). Results from simulations indicate reflections generated from material interfaces may negatively affect wave velocity estimates, whereas these reflections are accounted for in the PWIP and do not cause problems.

摘要

动脉的力学特性与多种心血管疾病相关,其中许多疾病预计涉及属性的强烈空间变化,这些变化可通过诊断成像来描绘。本文提出了一种脉搏波逆问题(PWIP),它可以根据血管壁位移的超声测量结果生成血管顺应性的空间分辨估计值。控制柔性管中脉搏波传播的一维方程由空间变化属性、入口压力边界条件的离散余弦变换分量、粘性损失常数和阻力出口边界条件进行参数化。通过更新模型参数,使用梯度下降优化将模型中的位移与测量数据进行拟合。模拟数据的反演表明,即使在高模拟测量噪声条件下,PWIP也能在实际条件下准确恢复正确的顺应性分布和入口压力。使用临床超声系统对具有已知顺应性对比度的硅胶模型进行成像。与独立的静态属性估计以及已知的硬夹杂位置(小至7毫米)相比,PWIP生成了模型顺应性的空间和定量准确地图。由于时空分辨率、测量噪声和顺应性对比度不允许使用传统方法(例如50%上升标记)准确跟踪脉搏波速度,因此PWIP对于这些模型实验是必要的。模拟结果表明,材料界面产生的反射可能会对波速估计产生负面影响,而这些反射在PWIP中得到了考虑,不会造成问题。

相似文献

1
An inverse approach to determining spatially varying arterial compliance using ultrasound imaging.
Phys Med Biol. 2016 Aug 7;61(15):5486-507. doi: 10.1088/0031-9155/61/15/5486. Epub 2016 Jul 6.
2
In vivo repeatability of the pulse wave inverse problem in human carotid arteries.
J Biomech. 2017 Nov 7;64:136-144. doi: 10.1016/j.jbiomech.2017.09.017. Epub 2017 Sep 27.
5
Pulse Wave Imaging Coupled With Vector Flow Mapping: A Phantom, Simulation, and In Vivo Study.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jul;68(7):2516-2531. doi: 10.1109/TUFFC.2021.3074113. Epub 2021 Jun 29.
8
Pulse Wave Velocity Prediction and Compliance Assessment in Elastic Arterial Segments.
Cardiovasc Eng Technol. 2015 Mar;6(1):49-58. doi: 10.1007/s13239-014-0202-x. Epub 2014 Dec 6.
9
Measurement of wave velocity in arterial walls with ultrasound transducers.
Ultrasound Med Biol. 2006 Nov;32(11):1655-60. doi: 10.1016/j.ultrasmedbio.2006.04.004.
10
Feasibility and Validation of 4-D Pulse Wave Imaging in Phantoms and In Vivo.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Sep;64(9):1305-1317. doi: 10.1109/TUFFC.2017.2735381. Epub 2017 Aug 3.

引用本文的文献

3
Feasibility of Bilinear Mechanical Characterization of the Abdominal Aorta in a Hypertensive Mouse Model.
Ultrasound Med Biol. 2021 Dec;47(12):3480-3490. doi: 10.1016/j.ultrasmedbio.2021.08.001. Epub 2021 Sep 7.
4
Multimodal guided wave inversion for arterial stiffness: methodology and validation in phantoms.
Phys Med Biol. 2021 May 31;66(11). doi: 10.1088/1361-6560/ac01b7.
5
Pulse Wave Imaging Coupled With Vector Flow Mapping: A Phantom, Simulation, and In Vivo Study.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Jul;68(7):2516-2531. doi: 10.1109/TUFFC.2021.3074113. Epub 2021 Jun 29.
8
Adaptive Pulse Wave Imaging: Automated Spatial Vessel Wall Inhomogeneity Detection in Phantoms and in-Vivo.
IEEE Trans Med Imaging. 2020 Jan;39(1):259-269. doi: 10.1109/TMI.2019.2926141. Epub 2019 Jul 1.
10
Pulse Wave Imaging in Carotid Artery Stenosis Human Patients in Vivo.
Ultrasound Med Biol. 2019 Feb;45(2):353-366. doi: 10.1016/j.ultrasmedbio.2018.07.013. Epub 2018 Nov 12.

本文引用的文献

1
Performance assessment of Pulse Wave Imaging using conventional ultrasound in canine aortas and normal human arteries .
Artery Res. 2015 Sep 1;11:19-28. doi: 10.1016/j.artres.2015.06.001. Epub 2015 Jul 22.
3
Piecewise Pulse Wave Imaging (pPWI) for Detection and Monitoring of Focal Vascular Disease in Murine Aortas and Carotids In Vivo.
IEEE Trans Med Imaging. 2016 Jan;35(1):13-28. doi: 10.1109/TMI.2015.2453194. Epub 2015 Jul 7.
4
Shear wave elastography plaque characterization with mechanical testing validation: a phantom study.
Phys Med Biol. 2015 Apr 21;60(8):3151-74. doi: 10.1088/0031-9155/60/8/3151. Epub 2015 Mar 24.
5
Detection of Aortic Wall Inclusion Using Regional Pulse Wave Propagation and Velocity .
Artery Res. 2012 Sep;6(3). doi: 10.1016/j.artres.2012.05.004.
6
Pulse wave imaging in normal, hypertensive and aneurysmal human aortas in vivo: a feasibility study.
Phys Med Biol. 2013 Jul 7;58(13):4549-62. doi: 10.1088/0031-9155/58/13/4549. Epub 2013 Jun 14.
7
Mapping the longitudinal wall stiffness heterogeneities within intact canine aortas using Pulse Wave Imaging (PWI) ex vivo.
J Biomech. 2013 Jul 26;46(11):1866-74. doi: 10.1016/j.jbiomech.2013.04.019. Epub 2013 Jun 12.
8
Silicone breast phantoms for elastographic imaging evaluation.
Med Phys. 2013 Jun;40(6):063503. doi: 10.1118/1.4805096.
9
Arterial wall elasticity: state of the art and future prospects.
Diagn Interv Imaging. 2013 May;94(5):561-9. doi: 10.1016/j.diii.2013.01.025. Epub 2013 Apr 22.
10
Multiresolution MR elastography using nonlinear inversion.
Med Phys. 2012 Oct;39(10):6388-96. doi: 10.1118/1.4754649.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验