Suppr超能文献

利用区域脉搏波传播和速度检测主动脉壁内含物

Detection of Aortic Wall Inclusion Using Regional Pulse Wave Propagation and Velocity .

作者信息

Shahmirzadi Danial, Konofagou Elisa E

机构信息

Columbia University, New York, NY.

出版信息

Artery Res. 2012 Sep;6(3). doi: 10.1016/j.artres.2012.05.004.

Abstract

Monitoring of the regional stiffening of the arterial wall may prove important in the diagnosis of various vascular pathologies. The pulse wave velocity (PWV) along the aortic wall has been shown to be dependent on the wall stiffness and has played a fundamental role in a range of diagnostic methods. Conventional clinical methods involve a global examination of the pulse traveling between two remote sites, e.g. femoral and carotid arteries, to provide an average PWV estimate. However, the majority of vascular diseases entail regional vascular changes and therefore may not be detected by a global PWV estimate. In this paper, a fluid-structure interaction study of straight-geometry aortas was carried out to examine the effects of regional stiffness changes on PWV. Five homogeneous aortas with increasing wall stiffness as well as two aortas with soft and hard inclusions were considered. In each case, spatio-temporal maps of the wall motion were used to analyze the regional pulse wave propagation. On the homogeneous aortas, increasing PWVs were found to increase with the wall moduli ( = 0.9988), indicating the reliability of the model to accurately represent the wave propagation. On the inhomogeneous aortas, formation of reflected and standing waves was observed at the site of the hard and soft inclusions, respectively. Neither the hard nor the soft inclusion had a significant effect on the velocity of the traveling pulse beyond the inclusion site, which supported the hypothesis that a global measurement of the average PWV could fail to detect regional abnormalities.

摘要

监测动脉壁的局部硬化可能对各种血管病变的诊断具有重要意义。沿主动脉壁的脉搏波速度(PWV)已被证明取决于血管壁的硬度,并且在一系列诊断方法中发挥了重要作用。传统的临床方法包括对在两个远距离部位(例如股动脉和颈动脉)之间传播的脉搏进行整体检查,以提供平均PWV估计值。然而,大多数血管疾病会导致局部血管变化,因此可能无法通过整体PWV估计值检测到。在本文中,对直管状主动脉进行了流固耦合研究,以检查局部硬度变化对PWV的影响。研究考虑了五个血管壁硬度逐渐增加的均匀主动脉以及两个分别含有软硬内含物的主动脉。在每种情况下,利用壁运动的时空图来分析局部脉搏波传播。在均匀主动脉上,发现PWV随着壁模量的增加而增加( = 0.9988),这表明该模型能够准确表示波传播的可靠性。在非均匀主动脉上,分别在硬内含物和软内含物的位置观察到了反射波和驻波的形成。硬内含物和软内含物对内含物部位之外的行进脉冲速度均无显著影响,这支持了以下假设:对平均PWV进行整体测量可能无法检测到局部异常。

相似文献

1
Detection of Aortic Wall Inclusion Using Regional Pulse Wave Propagation and Velocity .
Artery Res. 2012 Sep;6(3). doi: 10.1016/j.artres.2012.05.004.
3
Pulse wave imaging in normal, hypertensive and aneurysmal human aortas in vivo: a feasibility study.
Phys Med Biol. 2013 Jul 7;58(13):4549-62. doi: 10.1088/0031-9155/58/13/4549. Epub 2013 Jun 14.
4
Pulse wave imaging of normal and aneurysmal abdominal aortas in vivo.
IEEE Trans Med Imaging. 2009 Apr;28(4):477-86. doi: 10.1109/TMI.2008.928179. Epub 2008 Jul 15.
5
Regional pulse wave velocity and stress in aneurysmal arch-shaped aorta.
Biomed Mater Eng. 2018;29(4):527-549. doi: 10.3233/BME-181007.
6
Performance assessment of Pulse Wave Imaging using conventional ultrasound in canine aortas and normal human arteries .
Artery Res. 2015 Sep 1;11:19-28. doi: 10.1016/j.artres.2015.06.001. Epub 2015 Jul 22.
7
Mapping the longitudinal wall stiffness heterogeneities within intact canine aortas using Pulse Wave Imaging (PWI) ex vivo.
J Biomech. 2013 Jul 26;46(11):1866-74. doi: 10.1016/j.jbiomech.2013.04.019. Epub 2013 Jun 12.
8
9
Performance assessment and optimization of Pulse Wave Imaging (PWI) in ex vivo canine aortas and in vivo normal human arteries.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:3179-82. doi: 10.1109/EMBC.2012.6346640.

引用本文的文献

1
Numerical Investigation of Pulse Wave Propagation in Arteries Using Fluid Structure Interaction Capabilities.
Comput Math Methods Med. 2017;2017:4198095. doi: 10.1155/2017/4198095. Epub 2017 Sep 24.
2
In vivo repeatability of the pulse wave inverse problem in human carotid arteries.
J Biomech. 2017 Nov 7;64:136-144. doi: 10.1016/j.jbiomech.2017.09.017. Epub 2017 Sep 27.
3
3D-Printed Tissue-Mimicking Phantoms for Medical Imaging and Computational Validation Applications.
3D Print Addit Manuf. 2014 Mar 1;1(1):14-23. doi: 10.1089/3dp.2013.0010.
4
Detecting Regional Stiffness Changes in Aortic Aneurysmal Geometries Using Pressure-Normalized Strain.
Ultrasound Med Biol. 2017 Oct;43(10):2372-2394. doi: 10.1016/j.ultrasmedbio.2017.06.002. Epub 2017 Jul 17.
5
FSI Simulations of Pulse Wave Propagation in Human Abdominal Aortic Aneurysm: The Effects of Sac Geometry and Stiffness.
Biomed Eng Comput Biol. 2016 Jul 18;7:25-36. doi: 10.4137/BECB.S40094. eCollection 2016.
6
An inverse approach to determining spatially varying arterial compliance using ultrasound imaging.
Phys Med Biol. 2016 Aug 7;61(15):5486-507. doi: 10.1088/0031-9155/61/15/5486. Epub 2016 Jul 6.
7
Piecewise Pulse Wave Imaging (pPWI) for Detection and Monitoring of Focal Vascular Disease in Murine Aortas and Carotids In Vivo.
IEEE Trans Med Imaging. 2016 Jan;35(1):13-28. doi: 10.1109/TMI.2015.2453194. Epub 2015 Jul 7.
8
Monitoring and staging abdominal aortic aneurysm disease with pulse wave imaging.
Ultrasound Med Biol. 2014 Oct;40(10):2404-14. doi: 10.1016/j.ultrasmedbio.2014.04.013. Epub 2014 Aug 15.
10
Ex Vivo characterization of canine liver tissue viscoelasticity after high-intensity focused ultrasound ablation.
Ultrasound Med Biol. 2014 Feb;40(2):341-50. doi: 10.1016/j.ultrasmedbio.2013.09.016. Epub 2013 Dec 7.

本文引用的文献

1
3
In-vivo Pulse Wave Imaging for arterial stiffness measurement under normal and pathological conditions.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:567-70. doi: 10.1109/IEMBS.2011.6090105.
4
Resveratrol counteracts systemic and local inflammation involved in early abdominal aortic aneurysm development.
J Surg Res. 2011 Dec;171(2):e237-46. doi: 10.1016/j.jss.2011.07.041. Epub 2011 Aug 24.
6
Porohyperelastic finite element modeling of abdominal aortic aneurysms.
J Biomech Eng. 2010 Oct;132(10):104502. doi: 10.1115/1.4002370.
7
Arterial pulse wave velocity measurement: different techniques, similar results--implications for medical devices.
Biomech Model Mechanobiol. 2010 Dec;9(6):773-81. doi: 10.1007/s10237-010-0213-y. Epub 2010 Apr 7.
8
Pulse wave imaging for noninvasive and quantitative measurement of arterial stiffness in vivo.
Am J Hypertens. 2010 Apr;23(4):393-8. doi: 10.1038/ajh.2009.272. Epub 2010 Jan 21.
9
MRI-based biomechanical imaging: initial study on early plaque progression and vessel remodeling.
Magn Reson Imaging. 2009 Dec;27(10):1309-18. doi: 10.1016/j.mri.2009.05.032. Epub 2009 Jun 25.
10
Validation of a fluid-structure interaction numerical model for predicting flow transients in arteries.
J Biomech. 2009 Aug 7;42(11):1705-12. doi: 10.1016/j.jbiomech.2009.04.023. Epub 2009 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验