Department of Chemistry, University of Toronto , Toronto, Ontario M5S 3H4, Canada.
School of Biosciences, University of Birmingham , Edgbaston, Birmingham B15 2TT, United Kingdom.
ACS Appl Mater Interfaces. 2016 Aug 10;8(31):20342-51. doi: 10.1021/acsami.6b04629. Epub 2016 Jul 27.
The ability to fabricate nanostructured films by exploiting the phenomenon of microphase separation has made block copolymers an invaluable tool for a wide array of coating applications. Standard approaches to engineering nanodomains commonly involve the application of organic solvents, either through dissolution or annealing protocols, resulting in the release of volatile organic compounds (VOCs). In this paper, an aqueous-based method of fabricating low-VOC nanostructured block copolymer films is presented. The reported procedure allows for the phase transfer of water insoluble triblock copolymer, poly(styrene-block-2 vinylpyridine-block-ethylene oxide) (PS-b-P2VP-b-PEO), from a water immiscible phase to an aqueous environment with the assistance of a diblock copolymeric phase transfer agent, poly(styrene-block-ethylene oxide) (PS-b-PEO). Phase transfer into the aqueous phase results in self-assembly of PS-b-P2VP-b-PEO into core-shell-corona micelles, which are characterized by dynamic light scattering techniques. The films that result from coating the micellar solution onto Si/SiO2 surfaces exhibit nanoscale features that disrupt the ability of a model foulant, a zoospore of Ulva linza, to settle. The multilayered architecture consists of a pH-responsive P2VP-"shell" which can be stimulated to control the size of these features. The ability of these nanostructured thin films to resist protein adsorption and serve as potential marine antifouling coatings is supported through atomic force microscopy (AFM) and analysis of the settlement of Ulva linza zoospore. Field trials of the surfaces in a natural environment show the inhibition of macrofoulants for 1 month.
利用微相分离现象制造纳米结构薄膜的能力使嵌段共聚物成为广泛涂层应用的宝贵工具。通常,工程纳米结构的标准方法涉及有机溶剂的应用,无论是通过溶解还是退火方案,都会释放挥发性有机化合物(VOC)。本文提出了一种基于水的低 VOC 纳米结构嵌段共聚物薄膜的制造方法。所报道的方法允许在两亲性嵌段共聚物性转移剂聚(苯乙烯嵌段-氧化乙烯)(PS-b-PEO)的帮助下,将不溶于水的三嵌段共聚物聚(苯乙烯嵌段-2 乙烯基吡啶嵌段-氧化乙烯)(PS-b-P2VP-b-PEO)从水不混溶相转移到水相。向水相转移导致 PS-b-P2VP-b-PEO 自组装成核壳冠状胶束,其通过动态光散射技术进行表征。将胶束溶液涂覆到 Si/SiO2 表面上得到的薄膜具有纳米级特征,破坏了模型污染物,即 U. linza 游动孢子的沉降能力。多层结构由 pH 响应的 P2VP-"壳"组成,可刺激其控制这些特征的大小。这些纳米结构薄膜具有抵抗蛋白质吸附的能力,并可作为潜在的海洋防污涂层,这通过原子力显微镜(AFM)和 U. linza 游动孢子沉降的分析得到支持。在自然环境中进行的表面现场试验表明,这些表面可以抑制大型污垢物 1 个月。