Xu Xiaoyan, Guo Shifeng, Vancso Gyula Julius
Shenzhen Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Langmuir. 2025 Apr 1;41(12):7996-8018. doi: 10.1021/acs.langmuir.5c00450. Epub 2025 Mar 20.
In marine industries, severe economic losses are caused by accumulating organisms on surfaces in biofouling processes. Establishing a universal and nontoxic protocol to eliminate biofouling has been a notoriously difficult task due to the complexity of the marine organisms' interactions with surfaces and the chemical, mechanical, and morphological diversity of the surfaces involved. The tremendous variety of environmental parameters in marine environments further complicates this field. For efficient surface engineering to combat fouling, secretion, chemical structure, and properties of biobased adhesives and adhesion mechanisms must be understood. Advanced characterization techniques, like Atomic Force Microscopy (AFM), now allow one to study the three parameters determining surface adhesion and, eventually, fouling, i.e., morphology, chemistry, and surface mechanical modulus. By AFM, characterization can now be performed across length scales from nanometers to hundreds of micrometers. This review provides an up-to-date account of the most promising AFM-based approaches for imaging and characterizing natural adhesives provided by marine organisms. We summarize the current understanding of the molecular basis and the related relevant processes of marine fouling. We focus on applications of AFM "beyond imaging", i.e., to study interactions between adhesives and the surfaces involved. Additionally, we discuss the performance enhancement of polymer antifouling coatings using information derived from AFM. Knowledge and control of marine adhesion can be applied to prevent marine fouling, as well as to design bioadhesives to enhance potential medical applications. We present some milestone results and conclude with an outlook discussing novel possibilities for designing antifouling coatings and medical bioadhesives.
在海洋工业中,生物污损过程中表面生物的积聚造成了严重的经济损失。由于海洋生物与表面相互作用的复杂性以及所涉及表面的化学、机械和形态多样性,建立一种通用且无毒的消除生物污损的方案一直是一项极其困难的任务。海洋环境中种类繁多的环境参数使这一领域更加复杂。为了进行有效的表面工程以对抗污损,必须了解生物基粘合剂的分泌、化学结构和性质以及粘附机制。像原子力显微镜(AFM)这样的先进表征技术,现在使人们能够研究决定表面粘附以及最终污损的三个参数,即形态、化学和表面机械模量。通过AFM,现在可以在从纳米到数百微米的长度尺度上进行表征。本综述提供了基于AFM的最有前景的方法的最新情况,用于对海洋生物提供的天然粘合剂进行成像和表征。我们总结了目前对海洋污损分子基础及相关过程的理解。我们关注AFM“成像之外”的应用,即研究粘合剂与所涉及表面之间的相互作用。此外,我们讨论了利用从AFM获得的信息来提高聚合物防污涂层的性能。对海洋粘附的了解和控制可用于防止海洋污损,以及设计生物粘合剂以增强潜在的医学应用。我们展示了一些具有里程碑意义的结果,并以展望设计防污涂层和医用生物粘合剂的新可能性作为结论。
Annu Rev Chem Biomol Eng. 2019-6-7
Biotechnol Adv. 2013-9-16
Phys Chem Chem Phys. 2010-3-30
Chem Commun (Camb). 2022-12-13
Chem Rev. 2022-7-13
Acc Chem Res. 2022-4-19
Int J Mol Sci. 2022-1-20
Chem Soc Rev. 2021-11-29