文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

感知与应对海洋生物污损:海水环境中不同长度尺度表面的结构、作用力及过程

Perceiving and Countering Marine Biofouling: Structure, Forces, and Processes at Surfaces in Sea Water Across the Length Scales.

作者信息

Xu Xiaoyan, Guo Shifeng, Vancso Gyula Julius

机构信息

Shenzhen Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Langmuir. 2025 Apr 1;41(12):7996-8018. doi: 10.1021/acs.langmuir.5c00450. Epub 2025 Mar 20.


DOI:10.1021/acs.langmuir.5c00450
PMID:40113572
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11966768/
Abstract

In marine industries, severe economic losses are caused by accumulating organisms on surfaces in biofouling processes. Establishing a universal and nontoxic protocol to eliminate biofouling has been a notoriously difficult task due to the complexity of the marine organisms' interactions with surfaces and the chemical, mechanical, and morphological diversity of the surfaces involved. The tremendous variety of environmental parameters in marine environments further complicates this field. For efficient surface engineering to combat fouling, secretion, chemical structure, and properties of biobased adhesives and adhesion mechanisms must be understood. Advanced characterization techniques, like Atomic Force Microscopy (AFM), now allow one to study the three parameters determining surface adhesion and, eventually, fouling, i.e., morphology, chemistry, and surface mechanical modulus. By AFM, characterization can now be performed across length scales from nanometers to hundreds of micrometers. This review provides an up-to-date account of the most promising AFM-based approaches for imaging and characterizing natural adhesives provided by marine organisms. We summarize the current understanding of the molecular basis and the related relevant processes of marine fouling. We focus on applications of AFM "beyond imaging", i.e., to study interactions between adhesives and the surfaces involved. Additionally, we discuss the performance enhancement of polymer antifouling coatings using information derived from AFM. Knowledge and control of marine adhesion can be applied to prevent marine fouling, as well as to design bioadhesives to enhance potential medical applications. We present some milestone results and conclude with an outlook discussing novel possibilities for designing antifouling coatings and medical bioadhesives.

摘要

在海洋工业中,生物污损过程中表面生物的积聚造成了严重的经济损失。由于海洋生物与表面相互作用的复杂性以及所涉及表面的化学、机械和形态多样性,建立一种通用且无毒的消除生物污损的方案一直是一项极其困难的任务。海洋环境中种类繁多的环境参数使这一领域更加复杂。为了进行有效的表面工程以对抗污损,必须了解生物基粘合剂的分泌、化学结构和性质以及粘附机制。像原子力显微镜(AFM)这样的先进表征技术,现在使人们能够研究决定表面粘附以及最终污损的三个参数,即形态、化学和表面机械模量。通过AFM,现在可以在从纳米到数百微米的长度尺度上进行表征。本综述提供了基于AFM的最有前景的方法的最新情况,用于对海洋生物提供的天然粘合剂进行成像和表征。我们总结了目前对海洋污损分子基础及相关过程的理解。我们关注AFM“成像之外”的应用,即研究粘合剂与所涉及表面之间的相互作用。此外,我们讨论了利用从AFM获得的信息来提高聚合物防污涂层的性能。对海洋粘附的了解和控制可用于防止海洋污损,以及设计生物粘合剂以增强潜在的医学应用。我们展示了一些具有里程碑意义的结果,并以展望设计防污涂层和医用生物粘合剂的新可能性作为结论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/8dda4fffd264/la5c00450_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/65d9bd384d9f/la5c00450_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/9be99c6b6fba/la5c00450_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/6c85f592db20/la5c00450_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/815df06d4001/la5c00450_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/6860fbdb2701/la5c00450_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/120f7971d05c/la5c00450_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/158478b81623/la5c00450_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/9df3db9f598b/la5c00450_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/4e3d332264e1/la5c00450_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/78e6e3a2356b/la5c00450_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/f5776829ca3c/la5c00450_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/045404190fde/la5c00450_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/4c749c463ccb/la5c00450_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/8dda4fffd264/la5c00450_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/65d9bd384d9f/la5c00450_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/9be99c6b6fba/la5c00450_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/6c85f592db20/la5c00450_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/815df06d4001/la5c00450_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/6860fbdb2701/la5c00450_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/120f7971d05c/la5c00450_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/158478b81623/la5c00450_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/9df3db9f598b/la5c00450_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/4e3d332264e1/la5c00450_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/78e6e3a2356b/la5c00450_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/f5776829ca3c/la5c00450_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/045404190fde/la5c00450_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/4c749c463ccb/la5c00450_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb95/11966768/8dda4fffd264/la5c00450_0014.jpg

相似文献

[1]
Perceiving and Countering Marine Biofouling: Structure, Forces, and Processes at Surfaces in Sea Water Across the Length Scales.

Langmuir. 2025-4-1

[2]
Amphiphilic triblock copolymers with PEGylated hydrocarbon structures as environmentally friendly marine antifouling and fouling-release coatings.

Biofouling. 2014-4-14

[3]
Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms.

Adv Mater. 2010-9-30

[4]
Polymer-Based Marine Antifouling and Fouling Release Surfaces: Strategies for Synthesis and Modification.

Annu Rev Chem Biomol Eng. 2019-6-7

[5]
Antibiofouling Coatings For Marine Sensors: Progress and Perspectives on Materials, Methods, Impacts, and Field Trial Studies.

ACS Sens. 2025-3-28

[6]
Current and emerging environmentally-friendly systems for fouling control in the marine environment.

Biotechnol Adv. 2013-9-16

[7]
Research Strategies to Develop Environmentally Friendly Marine Antifouling Coatings.

Mar Drugs. 2020-7-18

[8]
Biomimicking micropatterned surfaces and their effect on marine biofouling.

Langmuir. 2014-8-5

[9]
A multi-step approach for testing non-toxic amphiphilic antifouling coatings against marine microfouling at different levels of biological complexity.

J Microbiol Methods. 2018-3

[10]
The role of "inert" surface chemistry in marine biofouling prevention.

Phys Chem Chem Phys. 2010-3-30

引用本文的文献

[1]
Novel Zwitterionic Hydrogels with High and Tunable Toughness for Anti-Fouling Application.

Gels. 2025-7-30

本文引用的文献

[1]
Correction of AFM data artifacts using a convolutional neural network trained with synthetically generated data.

Ultramicroscopy. 2023-4

[2]
Sticktight-inspired PEGylation for low-fouling coatings.

Chem Commun (Camb). 2022-12-13

[3]
Microscale characterization of abiotic surfaces and prediction of their biofouling/anti-biofouling potential using the AFM colloidal probe technique.

Adv Colloid Interface Sci. 2022-12

[4]
Modulation of Colloidal Particle Stiffness for the Exploration of Bio-Nano Interactions.

Langmuir. 2022-6-7

[5]
Metal Ion-Directed Functional Metal-Phenolic Materials.

Chem Rev. 2022-7-13

[6]
Principles of Cation-π Interactions for Engineering Mussel-Inspired Functional Materials.

Acc Chem Res. 2022-4-19

[7]
Cell-Cell Mating Interactions: Overview and Potential of Single-Cell Force Spectroscopy.

Int J Mol Sci. 2022-1-20

[8]
Engineering immunomodulatory and osteoinductive implant surfaces via mussel adhesion-mediated ion coordination and molecular clicking.

Nat Commun. 2022-1-10

[9]
Author Correction: Visualizing group II intron dynamics between the first and second steps of splicing.

Nat Commun. 2022-1-4

[10]
Design principles for creating synthetic underwater adhesives.

Chem Soc Rev. 2021-11-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索