Suppr超能文献

简单线性回归和多重线性回归:样本量考虑。

Simple and multiple linear regression: sample size considerations.

机构信息

Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 1020 Pine Avenue West, Montreal, Quebec H3A 1A2, Canada.

出版信息

J Clin Epidemiol. 2016 Nov;79:112-119. doi: 10.1016/j.jclinepi.2016.05.014. Epub 2016 Jul 5.

Abstract

OBJECTIVE

The suggested "two subjects per variable" (2SPV) rule of thumb in the Austin and Steyerberg article is a chance to bring out some long-established and quite intuitive sample size considerations for both simple and multiple linear regression.

STUDY DESIGN AND SETTING

This article distinguishes two of the major uses of regression models that imply very different sample size considerations, neither served well by the 2SPV rule. The first is etiological research, which contrasts mean Y levels at differing "exposure" (X) values and thus tends to focus on a single regression coefficient, possibly adjusted for confounders. The second research genre guides clinical practice. It addresses Y levels for individuals with different covariate patterns or "profiles." It focuses on the profile-specific (mean) Y levels themselves, estimating them via linear compounds of regression coefficients and covariates.

RESULTS AND CONCLUSION

By drawing on long-established closed-form variance formulae that lie beneath the standard errors in multiple regression, and by rearranging them for heuristic purposes, one arrives at quite intuitive sample size considerations for both research genres.

摘要

目的

奥斯汀和斯泰耶伯格文章中提出的“每个变量两个主题”(2SPV)经验法则为简单和多元线性回归带来了一些长期存在且相当直观的样本量考虑因素。

研究设计和环境

本文区分了回归模型的两种主要用途,这两种用途意味着非常不同的样本量考虑因素,而 2SPV 规则都不能很好地适用于这两种用途。第一种是病因研究,它对比了不同“暴露”(X)值下的平均 Y 水平,因此倾向于关注单个回归系数,可能会根据混杂因素进行调整。第二种研究类型指导临床实践。它针对具有不同协变量模式或“特征”的个体的 Y 水平。它侧重于特征特定的(平均)Y 水平本身,通过回归系数和协变量的线性组合来估计它们。

结果和结论

通过借鉴多元回归中标准误差背后的长期存在的闭式方差公式,并为了启发式目的对其进行重新排列,我们为这两种研究类型得出了相当直观的样本量考虑因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验