Suppr超能文献

一氧化氮通过依赖环磷酸鸟苷的机制调节骨骼肌疲劳、纤维类型、微管组织和线粒体ATP合成效率。

Nitric Oxide Regulates Skeletal Muscle Fatigue, Fiber Type, Microtubule Organization, and Mitochondrial ATP Synthesis Efficiency Through cGMP-Dependent Mechanisms.

作者信息

Moon Younghye, Balke Jordan E, Madorma Derik, Siegel Michael P, Knowels Gary, Brouckaert Peter, Buys Emmanuel S, Marcinek David J, Percival Justin M

机构信息

1 Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine , Miami, Florida.

2 Department of Bioengineering, University of Washington , Seattle, Washington.

出版信息

Antioxid Redox Signal. 2017 Jun 10;26(17):966-985. doi: 10.1089/ars.2016.6630. Epub 2016 Aug 17.

Abstract

AIM

Skeletal muscle nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathways are impaired in Duchenne and Becker muscular dystrophy partly because of reduced nNOSμ and soluble guanylate cyclase (GC) activity. However, GC function and the consequences of reduced GC activity in skeletal muscle are unknown. In this study, we explore the functions of GC and NO-cGMP signaling in skeletal muscle.

RESULTS

GC1, but not GC2, expression was higher in oxidative than glycolytic muscles. GC1 was found in a complex with nNOSμ and targeted to nNOS compartments at the Golgi complex and neuromuscular junction. Baseline GC activity and GC agonist responsiveness was reduced in the absence of nNOS. Structural analyses revealed aberrant microtubule directionality in GC1 muscle. Functional analyses of GC1 muscles revealed reduced fatigue resistance and postexercise force recovery that were not due to shifts in type IIA-IIX fiber balance. Force deficits in GC1 muscles were also not driven by defects in resting mitochondrial adenosine triphosphate (ATP) synthesis. However, increasing muscle cGMP with sildenafil decreased ATP synthesis efficiency and capacity, without impacting mitochondrial content or ultrastructure.

INNOVATION

GC may represent a new target for alleviating muscle fatigue and that NO-cGMP signaling may play important roles in muscle structure, contractility, and bioenergetics.

CONCLUSIONS

These findings suggest that GC activity is nNOS dependent and that muscle-specific control of GC expression and differential GC targeting may facilitate NO-cGMP signaling diversity. They suggest that nNOS regulates muscle fiber type, microtubule organization, fatigability, and postexercise force recovery partly through GC1 and suggest that NO-cGMP pathways may modulate mitochondrial ATP synthesis efficiency. Antioxid. Redox Signal. 26, 966-985.

摘要

目的

杜兴氏和贝克氏肌肉营养不良症患者骨骼肌中的一氧化氮-环磷酸鸟苷(NO-cGMP)通路受损,部分原因是神经元型一氧化氮合酶μ(nNOSμ)和可溶性鸟苷酸环化酶(GC)活性降低。然而,GC在骨骼肌中的功能以及GC活性降低的后果尚不清楚。在本研究中,我们探讨了GC和NO-cGMP信号通路在骨骼肌中的功能。

结果

GC1而非GC2的表达在氧化型肌肉中高于糖酵解型肌肉。发现GC1与nNOSμ形成复合物,并靶向高尔基体复合体和神经肌肉接头处的nNOS区室。在缺乏nNOS的情况下,基线GC活性和GC激动剂反应性降低。结构分析显示GC1肌肉中微管方向性异常。对GC1肌肉的功能分析显示,疲劳抵抗能力和运动后力量恢复能力降低,这并非由于IIA-IIX型纤维平衡的改变。GC1肌肉中的力量缺陷也不是由静息线粒体三磷酸腺苷(ATP)合成缺陷所驱动。然而,用西地那非增加肌肉中的cGMP会降低ATP合成效率和能力,而不影响线粒体含量或超微结构。

创新点

GC可能是缓解肌肉疲劳的新靶点,且NO-cGMP信号通路可能在肌肉结构、收缩性和生物能量学中发挥重要作用。

结论

这些发现表明GC活性依赖于nNOS,且对GC表达的肌肉特异性控制和GC的差异靶向可能促进NO-cGMP信号通路的多样性。它们表明nNOS部分通过GC1调节肌肉纤维类型、微管组织、疲劳性和运动后力量恢复,并表明NO-cGMP通路可能调节线粒体ATP合成效率。《抗氧化与氧化还原信号》26, 966 - 985。

相似文献

2
Neuronal nitric oxide synthase (nNOS) splice variant function: Insights into nitric oxide signaling from skeletal muscle.
Nitric Oxide. 2019 Jan 1;82:35-47. doi: 10.1016/j.niox.2018.11.004. Epub 2018 Nov 29.
3
Nitric oxide/cGMP signaling via guanylyl cyclase isoform 1 modulates glutamate and GABA release in somatosensory cortex of mice.
Neuroscience. 2017 Sep 30;360:180-189. doi: 10.1016/j.neuroscience.2017.07.063. Epub 2017 Aug 4.
6
The differential roles of the two NO-GC isoforms in adjusting airway reactivity.
Am J Physiol Lung Cell Mol Physiol. 2022 Oct 1;323(4):L450-L463. doi: 10.1152/ajplung.00404.2021. Epub 2022 Aug 16.
7
Refractoriness of urethral striated muscle contractility to nitric oxide-dependent cyclic GMP production.
Nitric Oxide. 2010 Aug 1;23(1):26-33. doi: 10.1016/j.niox.2010.03.004. Epub 2010 Mar 31.
9
Nitric oxide-cyclic GMP pathway with some emphasis on cavernosal contractility.
Int J Impot Res. 2004 Dec;16(6):459-69. doi: 10.1038/sj.ijir.3901256.
10
Nitric oxide-evoked transient kinetics of cyclic GMP in vascular smooth muscle cells.
Cell Signal. 2007 May;19(5):1023-33. doi: 10.1016/j.cellsig.2006.11.012. Epub 2006 Nov 28.

引用本文的文献

1
Renshen Yangrong decoction for secondary malaise and fatigue: network pharmacology and Mendelian randomization study.
Front Nutr. 2024 Jun 20;11:1404123. doi: 10.3389/fnut.2024.1404123. eCollection 2024.
4
Atrophy signaling pathways in respiratory and limb muscles of guinea pigs exposed to chronic cigarette smoke: role of soluble guanylate cyclase stimulation.
Am J Physiol Lung Cell Mol Physiol. 2023 May 1;324(5):L677-L693. doi: 10.1152/ajplung.00258.2022. Epub 2023 Mar 7.
5
Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise.
Antioxidants (Basel). 2023 Feb 16;12(2):501. doi: 10.3390/antiox12020501.
6
Stimulation of soluble guanylate cyclase by vericiguat reduces skeletal muscle atrophy of mice following chemotherapy.
Front Pharmacol. 2023 Jan 19;14:1112123. doi: 10.3389/fphar.2023.1112123. eCollection 2023.
8
Pharmaceutical Agents for Contractile-Metabolic Dysfunction After Volumetric Muscle Loss.
Tissue Eng Part A. 2022 Sep;28(17-18):795-806. doi: 10.1089/ten.TEA.2022.0036. Epub 2022 Aug 1.
9
UPR activation improves pathological alterations in cellular models of mitochondrial diseases.
Orphanet J Rare Dis. 2022 May 17;17(1):204. doi: 10.1186/s13023-022-02331-8.
10
Nitric oxide and skeletal muscle contractile function.
Nitric Oxide. 2022 May 1;122-123:54-61. doi: 10.1016/j.niox.2022.04.001. Epub 2022 Apr 8.

本文引用的文献

1
nNOS regulation of skeletal muscle fatigue and exercise performance.
Biophys Rev. 2011 Dec;3(4):209-217. doi: 10.1007/s12551-011-0060-9. Epub 2011 Nov 8.
3
Deficient nitric oxide signalling impairs skeletal muscle growth and performance: involvement of mitochondrial dysregulation.
Skelet Muscle. 2014 Dec 12;4(1):22. doi: 10.1186/s13395-014-0022-6. eCollection 2014.
5
Effect of phosphodiesterase inhibition on insulin resistance in obese individuals.
J Am Heart Assoc. 2014 Sep 11;3(5):e001001. doi: 10.1161/JAHA.114.001001.
6
PDE5 inhibition alleviates functional muscle ischemia in boys with Duchenne muscular dystrophy.
Neurology. 2014 Jun 10;82(23):2085-91. doi: 10.1212/WNL.0000000000000498. Epub 2014 May 7.
7
A new directionality tool for assessing microtubule pattern alterations.
Cytoskeleton (Hoboken). 2014 Apr;71(4):230-40. doi: 10.1002/cm.21166. Epub 2014 Feb 14.
8
Antiobesity pharmacotherapy: new drugs and emerging targets.
Clin Pharmacol Ther. 2014 Jan;95(1):53-66. doi: 10.1038/clpt.2013.204. Epub 2013 Oct 8.
9
The chemistry and biology of soluble guanylate cyclase stimulators and activators.
Angew Chem Int Ed Engl. 2013 Sep 2;52(36):9442-62. doi: 10.1002/anie.201302588. Epub 2013 Aug 20.
10
Genetic modification of hypertension by sGCα1.
Trends Cardiovasc Med. 2013 Nov;23(8):312-8. doi: 10.1016/j.tcm.2013.05.001. Epub 2013 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验