Moon Younghye, Balke Jordan E, Madorma Derik, Siegel Michael P, Knowels Gary, Brouckaert Peter, Buys Emmanuel S, Marcinek David J, Percival Justin M
1 Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine , Miami, Florida.
2 Department of Bioengineering, University of Washington , Seattle, Washington.
Antioxid Redox Signal. 2017 Jun 10;26(17):966-985. doi: 10.1089/ars.2016.6630. Epub 2016 Aug 17.
Skeletal muscle nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathways are impaired in Duchenne and Becker muscular dystrophy partly because of reduced nNOSμ and soluble guanylate cyclase (GC) activity. However, GC function and the consequences of reduced GC activity in skeletal muscle are unknown. In this study, we explore the functions of GC and NO-cGMP signaling in skeletal muscle.
GC1, but not GC2, expression was higher in oxidative than glycolytic muscles. GC1 was found in a complex with nNOSμ and targeted to nNOS compartments at the Golgi complex and neuromuscular junction. Baseline GC activity and GC agonist responsiveness was reduced in the absence of nNOS. Structural analyses revealed aberrant microtubule directionality in GC1 muscle. Functional analyses of GC1 muscles revealed reduced fatigue resistance and postexercise force recovery that were not due to shifts in type IIA-IIX fiber balance. Force deficits in GC1 muscles were also not driven by defects in resting mitochondrial adenosine triphosphate (ATP) synthesis. However, increasing muscle cGMP with sildenafil decreased ATP synthesis efficiency and capacity, without impacting mitochondrial content or ultrastructure.
GC may represent a new target for alleviating muscle fatigue and that NO-cGMP signaling may play important roles in muscle structure, contractility, and bioenergetics.
These findings suggest that GC activity is nNOS dependent and that muscle-specific control of GC expression and differential GC targeting may facilitate NO-cGMP signaling diversity. They suggest that nNOS regulates muscle fiber type, microtubule organization, fatigability, and postexercise force recovery partly through GC1 and suggest that NO-cGMP pathways may modulate mitochondrial ATP synthesis efficiency. Antioxid. Redox Signal. 26, 966-985.
杜兴氏和贝克氏肌肉营养不良症患者骨骼肌中的一氧化氮-环磷酸鸟苷(NO-cGMP)通路受损,部分原因是神经元型一氧化氮合酶μ(nNOSμ)和可溶性鸟苷酸环化酶(GC)活性降低。然而,GC在骨骼肌中的功能以及GC活性降低的后果尚不清楚。在本研究中,我们探讨了GC和NO-cGMP信号通路在骨骼肌中的功能。
GC1而非GC2的表达在氧化型肌肉中高于糖酵解型肌肉。发现GC1与nNOSμ形成复合物,并靶向高尔基体复合体和神经肌肉接头处的nNOS区室。在缺乏nNOS的情况下,基线GC活性和GC激动剂反应性降低。结构分析显示GC1肌肉中微管方向性异常。对GC1肌肉的功能分析显示,疲劳抵抗能力和运动后力量恢复能力降低,这并非由于IIA-IIX型纤维平衡的改变。GC1肌肉中的力量缺陷也不是由静息线粒体三磷酸腺苷(ATP)合成缺陷所驱动。然而,用西地那非增加肌肉中的cGMP会降低ATP合成效率和能力,而不影响线粒体含量或超微结构。
GC可能是缓解肌肉疲劳的新靶点,且NO-cGMP信号通路可能在肌肉结构、收缩性和生物能量学中发挥重要作用。
这些发现表明GC活性依赖于nNOS,且对GC表达的肌肉特异性控制和GC的差异靶向可能促进NO-cGMP信号通路的多样性。它们表明nNOS部分通过GC1调节肌肉纤维类型、微管组织、疲劳性和运动后力量恢复,并表明NO-cGMP通路可能调节线粒体ATP合成效率。《抗氧化与氧化还原信号》26, 966 - 985。