Department of Biosciences, Faculty of Sciences, COMSATS Institute of Information Technology, Park road, Islamabad. Pakistan.
Équipe "Protéolyse & Biofonctionnalités des Protéines et des Peptides" (PB2P), Unité de Recherche "Animal et Fonctionnalités des Produits Animaux" (UR AFPA), Université de Lorraine, Vandoeuvre-lès-Nancy, F-54506. France.
Curr Drug Targets. 2017;18(11):1269-1280. doi: 10.2174/1389450117666160711163119.
Global death rate due to cardiovascular diseases (CVDs) is highest as compared to other ailments. Principal risk factor associated with CVDs is hypertension. Major classes of current antihypertensive (AHT) therapies include angiotensin converting enzyme inhibitors (ACEI), angiotensin receptor blockers (ARBs) and calcium channel blockers (CCBs). All these antihypertensive therapeutic drugs have low oral bioavailability and can induce upper respiratory tract abstraction, angioedema, reflex tachycardia and extreme hypotensive effect after oral administration which can cause lethal effects in patients with heart diseases.
Controlled and targeted release by using antihypertensive nano-medicines can provide better solution to overcome above-mentioned side effects.
Scientific evolution towards the development of biopolymer based nano-carrier systems has unlocked new horizons for safe and/or edible nano drug delivery systems. In this article, we have reviewed in detail various mechanisms of AHT drugs, major draw backs associated with current therapeutic strategies, and the advantages of AHT nano-medicines over conventional drugs. Furthermore, recent reports of bio-based nano/micro -carrier systems with different AHT drugs have been analyzed with their key features. In depth review has been presented for chitosan as a potential carrier of AHT drugs due to its distinctive properties comprising muco-adhesive attribute, permeation enhancement as well as its biocompatible and biodegradable nature.
Chitosan based novel AHT nano-ceuticals can improve oral bioavailability, reduce hydrophobicity and increase the plasma half-life of AHT drugs by their sustained release in lower part of the GIT.
心血管疾病(CVDs)导致的全球死亡率高于其他疾病。与 CVDs 相关的主要风险因素是高血压。目前抗高血压(AHT)治疗的主要类别包括血管紧张素转换酶抑制剂(ACEI)、血管紧张素受体阻滞剂(ARB)和钙通道阻滞剂(CCB)。所有这些降压治疗药物的口服生物利用度都较低,口服后会引起上呼吸道抽象、血管性水肿、反射性心动过速和极度低血压效应,这可能对心脏病患者造成致命影响。
使用抗高血压纳米药物进行控制和靶向释放,可以提供更好的解决方案来克服上述副作用。
科学朝着基于生物聚合物的纳米载体系统的发展为安全和/或可食用的纳米药物输送系统开辟了新的视野。在本文中,我们详细回顾了 AHT 药物的各种作用机制、当前治疗策略的主要缺点以及 AHT 纳米药物相对于传统药物的优势。此外,还分析了不同 AHT 药物的基于生物的纳米/微载体系统的最新报告及其关键特征。由于壳聚糖具有黏附属性、增强渗透以及生物相容性和可生物降解的特性,因此作为 AHT 药物的潜在载体,我们对其进行了深入的评价。
基于壳聚糖的新型 AHT 纳米药物可以通过在胃肠道下部的缓释来提高 AHT 药物的口服生物利用度、降低疏水性并延长其血浆半衰期。