Nabet Cécile, Doumbo Safiatou, Jeddi Fakhri, Konaté Salimata, Manciulli Tommaso, Fofana Bakary, L'Ollivier Coralie, Camara Aminata, Moore Sandra, Ranque Stéphane, Théra Mahamadou A, Doumbo Ogobara K, Piarroux Renaud
UMR MD3 IP-TPT, Parasitology Laboratory, Timone Hospital, Aix-Marseilles University, Marseilles, France.
Malaria Research and Training Centre, Parasitic Diseases Epidemiology Department, UMI 3189, University of Sciences, Technique and Technology, Bamako, Mali.
Malar J. 2016 Jul 11;15:353. doi: 10.1186/s12936-016-1397-0.
In Mali, Plasmodium falciparum malaria is highly endemic and remains stable despite the implementation of various malaria control measures. Understanding P. falciparum population structure variations across the country could provide new insights to guide malaria control programmes. In this study, P. falciparum genetic diversity and population structure in regions of varying patterns of malaria transmission in Mali were analysed.
A total of 648 blood isolates adsorbed onto filter papers during population surveillance surveys (December 2012-March 2013, October 2013) in four distinct sites of Mali were screened for the presence of P. falciparum via quantitative PCR (qPCR). Multiple loci variable number of tandem repeats analysis (MLVA) using eight microsatellite markers was then performed on positive qPCR samples. Complete genotypes were then analysed for genetic diversity, genetic differentiation and linkage disequilibrium.
Of 156 qPCR-positive samples, complete genotyping of 112 samples was achieved. The parasite populations displayed high genetic diversity (mean He = 0.77), which was consistent with a high level of malaria transmission in Mali. Genetic differentiation was low (FST < 0.02), even between sites located approximately 900 km apart, thereby illustrating marked gene flux amongst parasite populations. The lack of linkage disequilibrium further revealed an absence of local clonal expansion, which was corroborated by the genotype relationship results. In contrast to the stable genetic diversity level observed throughout the country, mean multiplicity of infection increased from north to south (from 1.4 to 2.06) and paralleled malaria transmission levels observed locally.
In Mali, the high level of genetic diversity and the pronounced gene flux amongst P. falciparum populations may represent an obstacle to control malaria. Indeed, results suggest that parasite populations are polymorphic enough to adapt to their host and to counteract interventions, such as anti-malarial vaccination. Additionally, the panmictic parasite population structure imply that resistance traits may disseminate freely from one area to another, making control measures performed at a local level ineffective.
在马里,恶性疟原虫疟疾高度流行,尽管实施了各种疟疾控制措施,但疫情仍保持稳定。了解该国恶性疟原虫种群结构的变化可为指导疟疾控制计划提供新的见解。在本研究中,分析了马里不同疟疾传播模式地区的恶性疟原虫遗传多样性和种群结构。
在马里四个不同地点进行的人群监测调查(2012年12月至2013年3月、2013年10月)期间,共筛选了648份吸附在滤纸上的血液分离物,通过定量PCR(qPCR)检测恶性疟原虫的存在。然后对qPCR阳性样本使用八个微卫星标记进行多位点可变串联重复序列分析(MLVA)。接着对完整基因型进行遗传多样性、遗传分化和连锁不平衡分析。
在156份qPCR阳性样本中,成功对112份样本进行了完整基因分型。寄生虫种群表现出高度的遗传多样性(平均He = 0.77),这与马里高水平的疟疾传播一致。遗传分化程度较低(FST < 0.02),即使在相距约900公里的地点之间也是如此,这表明寄生虫种群之间存在明显的基因流动。缺乏连锁不平衡进一步表明不存在局部克隆扩增,基因型关系结果也证实了这一点。与全国观察到的稳定遗传多样性水平相反,平均感染复数从北向南增加(从1.4增至2.06),并与当地观察到的疟疾传播水平平行。
在马里,恶性疟原虫种群中高水平的遗传多样性和明显的基因流动可能是控制疟疾的障碍。事实上,结果表明寄生虫种群具有足够的多态性以适应其宿主并对抗诸如抗疟疾疫苗接种等干预措施。此外,随机交配的寄生虫种群结构意味着抗性特征可能会从一个地区自由传播到另一个地区,使得在地方层面实施的控制措施无效。