Shen Xianjun, Zhou Jin, Yi Li, Hu Xiaohua, He Tingting, Yang Jincai
School of Computer, Central China Normal University, Wuhan 430079, China; Collaborative & Innovative Center for Educational Technology, Central China Normal University, Wuhan 430079, China.
School of Computer, Central China Normal University, Wuhan 430079, China.
Methods. 2016 Nov 1;110:44-53. doi: 10.1016/j.ymeth.2016.07.006. Epub 2016 Jul 9.
Protein complexes comprising of interacting proteins in protein-protein interaction network (PPI network) play a central role in driving biological processes within cells. Recently, more and more swarm intelligence based algorithms to detect protein complexes have been emerging, which have become the research hotspot in proteomics field. In this paper, we propose a novel algorithm for identifying protein complexes based on brainstorming strategy (IPC-BSS), which is integrated into the main idea of swarm intelligence optimization and the improved K-means algorithm. Distance between the nodes in PPI network is defined by combining the network topology and gene ontology (GO) information. Inspired by human brainstorming process, IPC-BSS algorithm firstly selects the clustering center nodes, and then they are separately consolidated with the other nodes with short distance to form initial clusters. Finally, we put forward two ways of updating the initial clusters to search optimal results. Experimental results show that our IPC-BSS algorithm outperforms the other classic algorithms on yeast and human PPI networks, and it obtains many predicted protein complexes with biological significance.
蛋白质 - 蛋白质相互作用网络(PPI网络)中由相互作用的蛋白质组成的蛋白质复合物在驱动细胞内生物过程中起着核心作用。最近,越来越多基于群体智能的蛋白质复合物检测算法不断涌现,已成为蛋白质组学领域的研究热点。在本文中,我们提出了一种基于头脑风暴策略识别蛋白质复合物的新算法(IPC - BSS),该算法融合了群体智能优化的主要思想和改进的K - 均值算法。通过结合网络拓扑结构和基因本体(GO)信息来定义PPI网络中节点之间的距离。受人类头脑风暴过程的启发,IPC - BSS算法首先选择聚类中心节点,然后将它们分别与距离短的其他节点合并以形成初始聚类。最后,我们提出了两种更新初始聚类的方法来搜索最优结果。实验结果表明,我们的IPC - BSS算法在酵母和人类PPI网络上优于其他经典算法,并获得了许多具有生物学意义的预测蛋白质复合物。