Suppr超能文献

基于边权重算法和核心附着结构识别蛋白质复合物。

Identifying protein complexes based on an edge weight algorithm and core-attachment structure.

机构信息

College of Computer Science and Technology, Jilin University, No. 2699 Qianjin Street, Changchun, 130012, China.

Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, No. 2699 Qianjin Street, Changchun, 130012, China.

出版信息

BMC Bioinformatics. 2019 Sep 14;20(1):471. doi: 10.1186/s12859-019-3007-y.

Abstract

BACKGROUND

Protein complex identification from protein-protein interaction (PPI) networks is crucial for understanding cellular organization principles and functional mechanisms. In recent decades, numerous computational methods have been proposed to identify protein complexes. However, most of the current state-of-the-art studies still have some challenges to resolve, including their high false-positives rates, incapability of identifying overlapping complexes, lack of consideration for the inherent organization within protein complexes, and absence of some biological attachment proteins.

RESULTS

In this paper, to overcome these limitations, we present a protein complex identification method based on an edge weight method and core-attachment structure (EWCA) which consists of a complex core and some sparse attachment proteins. First, we propose a new weighting method to assess the reliability of interactions. Second, we identify protein complex cores by using the structural similarity between a seed and its direct neighbors. Third, we introduce a new method to detect attachment proteins that is able to distinguish and identify peripheral proteins and overlapping proteins. Finally, we bind attachment proteins to their corresponding complex cores to form protein complexes and discard redundant protein complexes. The experimental results indicate that EWCA outperforms existing state-of-the-art methods in terms of both accuracy and p-value. Furthermore, EWCA could identify many more protein complexes with statistical significance. Additionally, EWCA could have better balance accuracy and efficiency than some state-of-the-art methods with high accuracy.

CONCLUSIONS

In summary, EWCA has better performance for protein complex identification by a comprehensive comparison with twelve algorithms in terms of different evaluation metrics. The datasets and software are freely available for academic research at https://github.com/RongquanWang/EWCA .

摘要

背景

从蛋白质-蛋白质相互作用(PPI)网络中鉴定蛋白质复合物对于理解细胞组织原则和功能机制至关重要。在过去的几十年中,已经提出了许多计算方法来鉴定蛋白质复合物。然而,目前大多数最先进的研究仍然存在一些需要解决的挑战,包括高假阳性率、无法识别重叠复合物、缺乏对蛋白质复合物内在组织的考虑以及缺少一些生物附着蛋白。

结果

在本文中,为了克服这些限制,我们提出了一种基于边权重方法和核心附着结构(EWCA)的蛋白质复合物识别方法,该方法由一个复杂的核心和一些稀疏的附着蛋白组成。首先,我们提出了一种新的权重方法来评估相互作用的可靠性。其次,我们通过种子与其直接邻居之间的结构相似性来识别蛋白质复合物核心。第三,我们引入了一种新的方法来检测附着蛋白,能够区分和识别外围蛋白和重叠蛋白。最后,我们将附着蛋白绑定到它们对应的复合物核心上,形成蛋白质复合物,并丢弃冗余的蛋白质复合物。实验结果表明,EWCA 在准确性和 p 值方面均优于现有的最先进方法。此外,EWCA 能够识别更多具有统计学意义的蛋白质复合物。此外,与一些具有高精度的最先进方法相比,EWCA 可以具有更好的准确性和效率之间的平衡。

结论

总之,通过与 12 种算法在不同评估指标上的综合比较,EWCA 在蛋白质复合物识别方面具有更好的性能。数据集和软件可在 https://github.com/RongquanWang/EWCA 上免费供学术研究使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a91/6744658/e8d06f6d1d8b/12859_2019_3007_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验