Suppr超能文献

通过马尔可夫随机游走对蛋白质相互作用网络进行联合聚类。

Joint clustering of protein interaction networks through Markov random walk.

作者信息

Wang Yijie, Qian Xiaoning

出版信息

BMC Syst Biol. 2014;8 Suppl 1(Suppl 1):S9. doi: 10.1186/1752-0509-8-S1-S9. Epub 2014 Jan 24.

Abstract

Biological networks obtained by high-throughput profiling or human curation are typically noisy. For functional module identification, single network clustering algorithms may not yield accurate and robust results. In order to borrow information across multiple sources to alleviate such problems due to data quality, we propose a new joint network clustering algorithm ASModel in this paper. We construct an integrated network to combine network topological information based on protein-protein interaction (PPI) datasets and homological information introduced by constituent similarity between proteins across networks. A novel random walk strategy on the integrated network is developed for joint network clustering and an optimization problem is formulated by searching for low conductance sets defined on the derived transition matrix of the random walk, which fuses both topology and homology information. The optimization problem of joint clustering is solved by a derived spectral clustering algorithm. Network clustering using several state-of-the-art algorithms has been implemented to both PPI networks within the same species (two yeast PPI networks and two human PPI networks) and those from different species (a yeast PPI network and a human PPI network). Experimental results demonstrate that ASModel outperforms the existing single network clustering algorithms as well as another recent joint clustering algorithm in terms of complex prediction and Gene Ontology (GO) enrichment analysis.

摘要

通过高通量分析或人工整理获得的生物网络通常存在噪声。对于功能模块识别,单一网络聚类算法可能无法产生准确且稳健的结果。为了跨多个数据源借用信息以缓解由于数据质量导致的此类问题,我们在本文中提出了一种新的联合网络聚类算法ASModel。我们构建了一个集成网络,以结合基于蛋白质 - 蛋白质相互作用(PPI)数据集的网络拓扑信息以及跨网络蛋白质之间组成相似性引入的同源信息。针对联合网络聚类,我们在集成网络上开发了一种新颖的随机游走策略,并通过搜索在随机游走的推导转移矩阵上定义的低传导集来制定一个优化问题,该转移矩阵融合了拓扑和同源信息。联合聚类的优化问题通过一种推导的谱聚类算法来解决。我们已经使用几种最先进的算法对同一物种内的PPI网络(两个酵母PPI网络和两个人类PPI网络)以及来自不同物种的PPI网络(一个酵母PPI网络和一个人类PPI网络)进行了网络聚类。实验结果表明,在复杂预测和基因本体(GO)富集分析方面,ASModel优于现有的单一网络聚类算法以及另一种最近的联合聚类算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c09/4080334/b274bf87ac78/1752-0509-8-S1-S9-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验