Institute for Computational Materials Science, School of Physics and Electronics, Henan University, Kaifeng 75004, People's Republic of China.
Department of Physics, International Center for Quantum and Molecular Structures, and Materials Genome Institute, Shanghai University, Shanghai 200444, China.
Sci Rep. 2016 Jul 13;6:29550. doi: 10.1038/srep29550.
The effects of doping on the transport properties of Ca5Al2Sb6 are investigated using first-principles electronic structure methods and Boltzmann transport theory. The calculated results show that a maximum ZT value of 1.45 is achieved with an optimum carrier concentration at 1000 K. However, experimental studies have shown that the maximum ZT value is no more than 1 at 1000 K. By comparing the calculated Seebeck coefficient with experimental values, we find that the low dopant solubility in this material is not conductive to achieve the optimum carrier concentration, leading a smaller experimental value of the maximum ZT. Interestingly, the calculated dopant formation energies suggest that optimum carrier concentrations can be achieved when the dopants and Sb atoms have similar electronic configurations. Therefore, it might be possible to achieve a maximum ZT value of 1.45 at 1000 K with suitable dopants. These results provide a valuable theoretical guidance for the synthesis of high-performance bulk thermoelectric materials through dopants optimization.
采用第一性原理电子结构方法和玻尔兹曼输运理论研究了掺杂对 Ca5Al2Sb6 输运性能的影响。计算结果表明,在 1000 K 时,最佳载流子浓度下的最大 ZT 值达到 1.45。然而,实验研究表明,在 1000 K 时最大 ZT 值不超过 1。通过比较计算得到的塞贝克系数与实验值,我们发现该材料中掺杂剂的低溶解度不利于实现最佳载流子浓度,导致实验得到的最大 ZT 值较小。有趣的是,计算得到的掺杂剂形成能表明,当掺杂剂和 Sb 原子具有相似的电子构型时,可以获得最佳的载流子浓度。因此,通过合适的掺杂剂有可能在 1000 K 时实现最大 ZT 值 1.45。这些结果为通过掺杂优化合成高性能块体热电材料提供了有价值的理论指导。