Leonelli Lauriebeth, Erickson Erika, Lyska Dagmar, Niyogi Krishna K
Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720-3102, USA.
Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
Plant J. 2016 Nov;88(3):375-386. doi: 10.1111/tpj.13268. Epub 2016 Sep 15.
Plants must switch rapidly between light harvesting and photoprotection in response to environmental fluctuations in light intensity. This switch can lead to losses in absorbed energy usage, as photoprotective energy dissipation mechanisms can take minutes to hours to fully relax. One possible way to improve photosynthesis is to engineer these energy dissipation mechanisms (measured as non-photochemical quenching of chlorophyll a fluorescence, NPQ) to induce and relax more quickly, resulting in smaller losses under dynamic light conditions. Previous studies aimed at understanding the enzymes involved in the regulation of NPQ have relied primarily on labor-intensive and time-consuming generation of stable transgenic lines and mutant populations - approaches limited to organisms amenable to genetic manipulation and mapping. To enable rapid functional testing of NPQ-related genes from diverse organisms, we performed Agrobacterium tumefaciens-mediated transient expression assays in Nicotiana benthamiana to test if NPQ kinetics could be modified in fully expanded leaves. By expressing Arabidopsis thaliana genes known to be involved in NPQ, we confirmed the viability of this method for studying dynamic photosynthetic processes. Subsequently, we used naturally occurring variation in photosystem II subunit S, a modulator of NPQ in plants, to explore how differences in amino acid sequence affect NPQ capacity and kinetics. Finally, we functionally characterized four predicted carotenoid biosynthesis genes from the marine algae Nannochloropsis oceanica and Thalassiosira pseudonana and examined the effect of their expression on NPQ in N. benthamiana. This method offers a powerful alternative to traditional gene characterization methods by providing a fast and easy platform for assessing gene function in planta.
植物必须根据光照强度的环境波动,在光能捕获和光保护之间迅速切换。这种切换可能导致吸收能量利用的损失,因为光保护能量耗散机制可能需要几分钟到几小时才能完全恢复。一种改善光合作用的可能方法是对这些能量耗散机制(以叶绿素a荧光的非光化学猝灭NPQ衡量)进行工程改造,使其诱导和恢复得更快,从而在动态光照条件下损失更小。以往旨在了解参与NPQ调节的酶的研究,主要依赖于稳定转基因系和突变群体的劳动密集型和耗时的构建——这些方法仅限于适合基因操作和定位的生物体。为了能够对来自不同生物体的NPQ相关基因进行快速功能测试,我们在本氏烟草中进行了根癌农杆菌介导的瞬时表达试验,以测试在完全展开的叶片中NPQ动力学是否可以改变。通过表达已知参与NPQ的拟南芥基因,我们证实了该方法用于研究动态光合过程的可行性。随后,我们利用植物光系统II亚基S(植物中NPQ的一种调节因子)的自然变异,来探索氨基酸序列差异如何影响NPQ能力和动力学。最后,我们对来自海洋藻类海洋微拟球藻和假微型海链藻的四个预测类胡萝卜素生物合成基因进行了功能表征,并研究了它们的表达对本氏烟草中NPQ的影响。该方法通过提供一个快速简便的平台来评估植物中的基因功能,为传统基因表征方法提供了一个有力的替代方案。