Suppr超能文献

如何设计未知:推进对植物和土壤生物学的定量和预测性理解,以应对气候变化。

How to engineer the unknown: Advancing a quantitative and predictive understanding of plant and soil biology to address climate change.

机构信息

Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America.

Feedstocks Division, Joint BioEnergy Institute, Emeryville, California, United States of America.

出版信息

PLoS Biol. 2023 Jul 17;21(7):e3002190. doi: 10.1371/journal.pbio.3002190. eCollection 2023 Jul.

Abstract

Our basic understanding of carbon cycling in the biosphere remains qualitative and incomplete, precluding our ability to effectively engineer novel solutions to climate change. How can we attempt to engineer the unknown? This challenge has been faced before in plant biology, providing a roadmap to guide future efforts. We use examples from over a century of photosynthesis research to illustrate the key principles that will set future plant engineering on a solid footing, namely, an effort to identify the key control variables, quantify the effects of systematically tuning these variables, and use theory to account for these observations. The main contributions of plant synthetic biology will stem not from delivering desired genotypes but from enabling the kind of predictive understanding necessary to rationally design these genotypes in the first place. Only then will synthetic plant biology be able to live up to its promise.

摘要

我们对生物圈碳循环的基本理解仍然是定性的和不完整的,这限制了我们有效设计应对气候变化的新解决方案的能力。我们怎么能尝试设计未知的东西呢?在植物生物学中,我们以前就面临过这个挑战,为未来的努力提供了一个指导路线图。我们使用一个多世纪的光合作用研究的例子来说明将为未来的植物工程奠定坚实基础的关键原则,即努力确定关键控制变量,量化系统调整这些变量的影响,并利用理论来解释这些观察结果。植物合成生物学的主要贡献将不是来自于提供所需的基因型,而是来自于能够实现首先进行合理设计这些基因型所需的那种预测性理解。只有这样,合成植物生物学才能不负众望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c831/10351729/18a12c52f753/pbio.3002190.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验