文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

灵长类动物大脑发育的综合转录图谱。

A comprehensive transcriptional map of primate brain development.

作者信息

Bakken Trygve E, Miller Jeremy A, Ding Song-Lin, Sunkin Susan M, Smith Kimberly A, Ng Lydia, Szafer Aaron, Dalley Rachel A, Royall Joshua J, Lemon Tracy, Shapouri Sheila, Aiona Kaylynn, Arnold James, Bennett Jeffrey L, Bertagnolli Darren, Bickley Kristopher, Boe Andrew, Brouner Krissy, Butler Stephanie, Byrnes Emi, Caldejon Shiella, Carey Anita, Cate Shelby, Chapin Mike, Chen Jefferey, Dee Nick, Desta Tsega, Dolbeare Tim A, Dotson Nadia, Ebbert Amanda, Fulfs Erich, Gee Garrett, Gilbert Terri L, Goldy Jeff, Gourley Lindsey, Gregor Ben, Gu Guangyu, Hall Jon, Haradon Zeb, Haynor David R, Hejazinia Nika, Hoerder-Suabedissen Anna, Howard Robert, Jochim Jay, Kinnunen Marty, Kriedberg Ali, Kuan Chihchau L, Lau Christopher, Lee Chang-Kyu, Lee Felix, Luong Lon, Mastan Naveed, May Ryan, Melchor Jose, Mosqueda Nerick, Mott Erika, Ngo Kiet, Nyhus Julie, Oldre Aaron, Olson Eric, Parente Jody, Parker Patrick D, Parry Sheana, Pendergraft Julie, Potekhina Lydia, Reding Melissa, Riley Zackery L, Roberts Tyson, Rogers Brandon, Roll Kate, Rosen David, Sandman David, Sarreal Melaine, Shapovalova Nadiya, Shi Shu, Sjoquist Nathan, Sodt Andy J, Townsend Robbie, Velasquez Lissette, Wagley Udi, Wakeman Wayne B, White Cassandra, Bennett Crissa, Wu Jennifer, Young Rob, Youngstrom Brian L, Wohnoutka Paul, Gibbs Richard A, Rogers Jeffrey, Hohmann John G, Hawrylycz Michael J, Hevner Robert F, Molnár Zoltán, Phillips John W, Dang Chinh, Jones Allan R, Amaral David G, Bernard Amy, Lein Ed S

机构信息

Allen Institute for Brain Science, Seattle, Washington 98109, USA.

Department of Psychiatry and Behavioral Science, California National Primate Research Center, The M.I.N.D. Institute, University of California, Davis, Sacramento, California 95817, USA.

出版信息

Nature. 2016 Jul 21;535(7612):367-75. doi: 10.1038/nature18637. Epub 2016 Jul 13.


DOI:10.1038/nature18637
PMID:27409810
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5325728/
Abstract

The transcriptional underpinnings of brain development remain poorly understood, particularly in humans and closely related non-human primates. We describe a high-resolution transcriptional atlas of rhesus monkey (Macaca mulatta) brain development that combines dense temporal sampling of prenatal and postnatal periods with fine anatomical division of cortical and subcortical regions associated with human neuropsychiatric disease. Gene expression changes more rapidly before birth, both in progenitor cells and maturing neurons. Cortical layers and areas acquire adult-like molecular profiles surprisingly late in postnatal development. Disparate cell populations exhibit distinct developmental timing of gene expression, but also unexpected synchrony of processes underlying neural circuit construction including cell projection and adhesion. Candidate risk genes for neurodevelopmental disorders including primary microcephaly, autism spectrum disorder, intellectual disability, and schizophrenia show disease-specific spatiotemporal enrichment within developing neocortex. Human developmental expression trajectories are more similar to monkey than rodent, although approximately 9% of genes show human-specific regulation with evidence for prolonged maturation or neoteny compared to monkey.

摘要

大脑发育的转录基础仍知之甚少,尤其是在人类和与之亲缘关系密切的非人类灵长类动物中。我们描述了恒河猴(猕猴)大脑发育的高分辨率转录图谱,该图谱将产前和产后阶段的密集时间采样与与人类神经精神疾病相关的皮质和皮质下区域的精细解剖划分相结合。在出生前,无论是祖细胞还是成熟神经元中的基因表达变化都更快。皮质层和区域在出生后发育的后期才意外地获得类似成人的分子特征。不同的细胞群表现出不同的基因表达发育时间,但在神经回路构建(包括细胞投射和黏附)的潜在过程中也存在意想不到的同步性。包括原发性小头畸形、自闭症谱系障碍、智力残疾和精神分裂症在内的神经发育障碍的候选风险基因在发育中的新皮质内表现出疾病特异性的时空富集。尽管约9%的基因显示出人类特异性调控,与猴子相比有延长成熟或幼态持续的证据,但人类发育表达轨迹与猴子比与啮齿动物更相似。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/5325728/bf1bbde2d5e1/nihms794903f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/5325728/8a71efe9ee19/nihms794903f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/5325728/4a404726736e/nihms794903f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/5325728/0abdfb37bbd0/nihms794903f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/5325728/eb3196bb3880/nihms794903f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/5325728/8b897cc23faa/nihms794903f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/5325728/4eecff7e6dc2/nihms794903f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/5325728/b8fa92b9ff0b/nihms794903f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/5325728/b9cbe078bf8e/nihms794903f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/5325728/cc39ac8e0cae/nihms794903f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/5325728/d57518b14a2a/nihms794903f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/5325728/08361ac4cdbb/nihms794903f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/5325728/ef530fe9a3c4/nihms794903f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/5325728/bf1bbde2d5e1/nihms794903f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/5325728/8a71efe9ee19/nihms794903f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/5325728/4a404726736e/nihms794903f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/5325728/0abdfb37bbd0/nihms794903f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/5325728/eb3196bb3880/nihms794903f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/5325728/8b897cc23faa/nihms794903f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/5325728/4eecff7e6dc2/nihms794903f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/5325728/b8fa92b9ff0b/nihms794903f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/5325728/b9cbe078bf8e/nihms794903f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/5325728/cc39ac8e0cae/nihms794903f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/5325728/d57518b14a2a/nihms794903f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/5325728/08361ac4cdbb/nihms794903f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/5325728/ef530fe9a3c4/nihms794903f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/5325728/bf1bbde2d5e1/nihms794903f6.jpg

相似文献

[1]
A comprehensive transcriptional map of primate brain development.

Nature. 2016-7-21

[2]
Spatiotemporal dynamics of the postnatal developing primate brain transcriptome.

Hum Mol Genet. 2015-8-1

[3]
Spatiotemporal transcriptomic divergence across human and macaque brain development.

Science. 2018-12-13

[4]
Transcriptomic signatures of neuronal differentiation and their association with risk genes for autism spectrum and related neuropsychiatric disorders.

Transl Psychiatry. 2016-8-2

[5]
The Pleiotropic MET Receptor Network: Circuit Development and the Neural-Medical Interface of Autism.

Biol Psychiatry. 2017-3-1

[6]
A Single-Cell Transcriptomic Atlas of Human Neocortical Development during Mid-gestation.

Neuron. 2019-7-11

[7]
Conserved molecular signatures of neurogenesis in the hippocampal subgranular zone of rodents and primates.

Development. 2013-10-23

[8]
Transcriptional landscape of the prenatal human brain.

Nature. 2014-4-2

[9]
Aberrant cortical development is driven by impaired cell cycle and translational control in a syndrome model.

Elife. 2022-6-28

[10]
An anatomically comprehensive atlas of the adult human brain transcriptome.

Nature. 2012-9-20

引用本文的文献

[1]
Early developmental origins of cortical disorders modeled in human neural stem cells.

Nat Commun. 2025-7-9

[2]
Rare Copy Number Variants Reveal Critical Cell Types and Periods of Brain Development in Neurodevelopmental Disorders.

Biol Psychiatry Glob Open Sci. 2025-4-1

[3]
Brain-wide connections of the parvicellular subdivision of the basolateral and basomedial amygdaloid nuclei in the rats.

Front Neural Circuits. 2025-4-25

[4]
Alternative splicing categorizes organ development by stage and reveals unique human splicing variants linked to neuromuscular disorders.

J Biol Chem. 2025-4-25

[5]
Developmental molecular signatures define cortico-brainstem circuit for skilled forelimb movement.

Res Sq. 2025-3-26

[6]
Multiplexed CRISPRi Reveals a Transcriptional Switch Between KLF Activators and Repressors in the Maturing Neocortex.

bioRxiv. 2025-2-15

[7]
A comparative view of human and mouse telencephalon inhibitory neuron development.

Development. 2025-1-1

[8]
Cis-Regulatory Evolution of CCNB1IP1 Driving Gradual Increase of Cortical Size and Folding in primates.

bioRxiv. 2024-12-9

[9]
Genomic predictors of radiation response: recent progress towards personalized radiotherapy for brain metastases.

Cell Death Discov. 2024-12-18

[10]
Initial regional cytoarchitectonic differences in dorsal and orbitobasal human developing frontal cortex revealed by spatial transcriptomics.

Brain Struct Funct. 2024-12-18

本文引用的文献

[1]
The calcium sensor synaptotagmin 7 is required for synaptic facilitation.

Nature. 2016-1-7

[2]
Adult mouse cortical cell taxonomy revealed by single cell transcriptomics.

Nat Neurosci. 2016-2

[3]
Canonical genetic signatures of the adult human brain.

Nat Neurosci. 2015-12

[4]
Genes that Affect Brain Structure and Function Identified by Rare Variant Analyses of Mendelian Neurologic Disease.

Neuron. 2015-11-4

[5]
Low load for disruptive mutations in autism genes and their biased transmission.

Proc Natl Acad Sci U S A. 2015-10-13

[6]
Longitudinal analysis of the developing rhesus monkey brain using magnetic resonance imaging: birth to adulthood.

Brain Struct Funct. 2016-6

[7]
A survey of human brain transcriptome diversity at the single cell level.

Proc Natl Acad Sci U S A. 2015-6-9

[8]
Spatiotemporal dynamics of the postnatal developing primate brain transcriptome.

Hum Mol Genet. 2015-8-1

[9]
Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing.

Science. 2015-5-22

[10]
Brains, genes, and primates.

Neuron. 2015-5-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索