文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多重CRISPR干扰揭示了成熟新皮质中KLF激活因子和抑制因子之间的转录开关。

Multiplexed CRISPRi Reveals a Transcriptional Switch Between KLF Activators and Repressors in the Maturing Neocortex.

作者信息

Kirk Ryan W, Sun Liwei, Xiao Ruixuan, Clark Erin A, Nelson Sacha

机构信息

Department of Biology, Brandeis University, Waltham, MA 02453, USA.

出版信息

bioRxiv. 2025 Feb 15:2025.02.07.636951. doi: 10.1101/2025.02.07.636951.


DOI:10.1101/2025.02.07.636951
PMID:39975013
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11839100/
Abstract

A critical phase of mammalian brain development takes place after birth. Neurons of the mouse neocortex undergo dramatic changes in their morphology, physiology, and synaptic connections during the first postnatal month, while properties of immature neurons, such as the capacity for robust axon outgrowth, are lost. The genetic and epigenetic programs controlling prenatal development are well studied, but our understanding of the transcriptional mechanisms that regulate postnatal neuronal maturation is comparatively lacking. By integrating chromatin accessibility and gene expression data from two subtypes of neocortical pyramidal neurons in the neonatal and maturing brain, we predicted a role for the Krüppel-Like Factor (KLF) family of Transcription Factors in the developmental regulation of neonatally expressed genes. Using a multiplexed CRISPR Interference (CRISPRi) knockdown strategy, we found that a shift in expression from KLF activators (Klf6, Klf7) to repressors (Klf9, Klf13) during early postnatal development functions as a transcriptional 'switch' to first activate, then repress a set of shared targets with cytoskeletal functions including and . We demonstrate that this switch is buffered by redundancy between KLF paralogs, which our multiplexed CRISPRi strategy is equipped to overcome and study. Our results indicate that competition between activators and repressors within the KLF family regulates a conserved component of the postnatal maturation program that may underlie the loss of intrinsic axon growth in maturing neurons. This could facilitate the transition from axon growth to synaptic refinement required to stabilize mature circuits.

摘要

哺乳动物大脑发育的一个关键阶段发生在出生后。小鼠新皮质的神经元在出生后的第一个月内,其形态、生理和突触连接会发生巨大变化,而未成熟神经元的特性,如强大的轴突生长能力,则会丧失。控制产前发育的遗传和表观遗传程序已得到充分研究,但我们对调节出生后神经元成熟的转录机制的了解相对较少。通过整合来自新生和成熟大脑中两种新皮质锥体神经元亚型的染色质可及性和基因表达数据,我们预测了转录因子Krüppel样因子(KLF)家族在新生儿表达基因的发育调控中的作用。使用多重CRISPR干扰(CRISPRi)敲低策略,我们发现出生后早期发育过程中从KLF激活因子(Klf6、Klf7)到抑制因子(Klf9、Klf13)的表达转变,起到了转录“开关”的作用,先激活然后抑制一组具有细胞骨架功能的共同靶点,包括 和 。我们证明,这种开关由KLF旁系同源物之间的冗余所缓冲,而我们的多重CRISPRi策略能够克服并研究这种冗余。我们的结果表明,KLF家族内激活因子和抑制因子之间的竞争调节了出生后成熟程序的一个保守组成部分,这可能是成熟神经元内在轴突生长丧失的基础。这可能有助于从轴突生长向稳定成熟回路所需的突触细化的转变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c79/11839100/296a324bbce0/nihpp-2025.02.07.636951v2-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c79/11839100/6e5e38b53cd3/nihpp-2025.02.07.636951v2-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c79/11839100/67302460bc0b/nihpp-2025.02.07.636951v2-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c79/11839100/5b96923a9837/nihpp-2025.02.07.636951v2-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c79/11839100/2a7eca939881/nihpp-2025.02.07.636951v2-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c79/11839100/fd61af055e81/nihpp-2025.02.07.636951v2-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c79/11839100/89595ecda21e/nihpp-2025.02.07.636951v2-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c79/11839100/43a2733f5e5b/nihpp-2025.02.07.636951v2-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c79/11839100/298f59913466/nihpp-2025.02.07.636951v2-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c79/11839100/296a324bbce0/nihpp-2025.02.07.636951v2-f0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c79/11839100/6e5e38b53cd3/nihpp-2025.02.07.636951v2-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c79/11839100/67302460bc0b/nihpp-2025.02.07.636951v2-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c79/11839100/5b96923a9837/nihpp-2025.02.07.636951v2-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c79/11839100/2a7eca939881/nihpp-2025.02.07.636951v2-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c79/11839100/fd61af055e81/nihpp-2025.02.07.636951v2-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c79/11839100/89595ecda21e/nihpp-2025.02.07.636951v2-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c79/11839100/43a2733f5e5b/nihpp-2025.02.07.636951v2-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c79/11839100/298f59913466/nihpp-2025.02.07.636951v2-f0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c79/11839100/296a324bbce0/nihpp-2025.02.07.636951v2-f0009.jpg

相似文献

[1]
Multiplexed CRISPRi Reveals a Transcriptional Switch Between KLF Activators and Repressors in the Maturing Neocortex.

bioRxiv. 2025-2-15

[2]
Short-Term Memory Impairment

2025-1

[3]
Peripuberty Is a Sensitive Period for Prefrontal Parvalbumin Interneuron Activity to Impact Adult Cognitive Flexibility.

Dev Neurosci. 2025

[4]
A transcriptional constraint mechanism limits the homeostatic response to activity deprivation in mammalian neocortex.

Elife. 2023-2-7

[5]
Telephone support for women during pregnancy and the first six weeks postpartum.

Cochrane Database Syst Rev. 2013-7-18

[6]
Sexual Harassment and Prevention Training

2025-1

[7]
Factors that influence parents' and informal caregivers' views and practices regarding routine childhood vaccination: a qualitative evidence synthesis.

Cochrane Database Syst Rev. 2021-10-27

[8]
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.

Clin Orthop Relat Res. 2025-1-1

[9]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[10]
Prolonged partner separation erodes nucleus accumbens transcriptional signatures of pair bonding in male prairie voles.

Elife. 2023-2-28

本文引用的文献

[1]
Axon guidance during mouse central nervous system regeneration is required for specific brain innervation.

Dev Cell. 2024-12-16

[2]
Comparative analysis of Krüppel-like factors expression in the retinas of zebrafish and mice during development and after injury.

Gen Comp Endocrinol. 2024-9-15

[3]
Compensation between FOXP transcription factors maintains proper striatal function.

Cell Rep. 2024-5-28

[4]
Gene-environmental regulation of the postnatal post-mitotic neuronal maturation.

Trends Genet. 2024-6

[5]
Epigenetic control and manipulation of neuronal maturation timing.

Curr Opin Genet Dev. 2024-4

[6]
An epigenetic barrier sets the timing of human neuronal maturation.

Nature. 2024-2

[7]
Single-cell analysis of chromatin accessibility in the adult mouse brain.

Nature. 2023-12

[8]
A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain.

Nature. 2023-12

[9]
Human neuronal maturation comes of age: cellular mechanisms and species differences.

Nat Rev Neurosci. 2024-1

[10]
Krüppel-like factor 7 deficiency disrupts corpus callosum development and neuronal migration in the developing mouse cerebral cortex.

Brain Pathol. 2023-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索