Proscia Nicholas V, Moocarme Matthew, Chang Roger, Kretzschmar Ilona, Menon Vinod M, Vuong Luat T
Opt Express. 2016 May 16;24(10):10402-11. doi: 10.1364/OE.24.010402.
There is wide interest in understanding and leveraging the nonlinear plasmon-induced potentials of nanostructured materials. We investigate the electrical response produced by spin-polarized light across a large-area bottom-up assembled 2D plasmonic crystal. Numerical approximations of the Lorentz forces provide quantitative agreement with our experimentally-measured DC voltages. We show that the underlying mechanism of the spin-polarized voltages is a gradient force that arises from asymmetric, time-averaged hotspots, whose locations shift with the chirality of light. Finally, we formalize the role of spin-orbit interactions in the shifted intensity patterns and significantly advance our understanding of the physical phenomena, often related to the spin Hall effect of light.
人们对理解和利用纳米结构材料的非线性等离子体激元诱导电势有着广泛的兴趣。我们研究了自旋极化光穿过大面积自下而上组装的二维等离子体晶体时产生的电响应。洛伦兹力的数值近似与我们实验测量的直流电压提供了定量的一致性。我们表明,自旋极化电压的潜在机制是一种梯度力,它源于不对称的、时间平均的热点,其位置随光的手性而移动。最后,我们将自旋轨道相互作用在强度模式偏移中的作用形式化,并显著推进了我们对通常与光的自旋霍尔效应相关的物理现象的理解。