González-Alcalde Alma K, Shi Xinping, Ortiz Victor H, Feng Ji, Wilson Richard B, Vuong Luat T
University of California at Riverside, Riverside, CA, USA.
Nanophotonics. 2024 Feb 5;13(11):1993-2002. doi: 10.1515/nanoph-2023-0777. eCollection 2024 May.
Nonmagnetic media can be magnetized by light via processes referred to as an inverse Faraday effect (IFE). With nonmagnetic metal nanostructures, the IFE is dominated by the presence of light-induced solenoidal surface currents or plasmons with orbital angular momenta, whose properties depend on both the light and nanostructure geometry. Here, through a systematic study of gold nanodisks with different sizes, we demonstrate order-of-magnitude enhancement of the IFE compared to a bare gold film. Large IFE signals occur when light excites the dipolar plasmonic resonance of the gold nanodisk. We observe that the spectral response of the IFE signal mirrors the spectral response of time-dependent thermo-transmission signals. Our careful quantitative experimental measurements and analysis offer insight into the magnitude of IFE in plasmonic structures for compact, low-power, magneto-optic applications.
非磁性介质可通过所谓的逆法拉第效应(IFE)过程被光磁化。对于非磁性金属纳米结构,IFE由光诱导的具有轨道角动量的螺线管表面电流或等离激元主导,其特性取决于光和纳米结构的几何形状。在这里,通过对不同尺寸的金纳米盘进行系统研究,我们证明与裸金膜相比,IFE增强了几个数量级。当光激发金纳米盘的偶极等离激元共振时,会出现大的IFE信号。我们观察到IFE信号的光谱响应反映了随时间变化的热传输信号的光谱响应。我们仔细的定量实验测量和分析为紧凑型、低功率磁光应用的等离激元结构中IFE的大小提供了见解。