Suppr超能文献

沙门氏菌病的动物模型:在疫苗研究中的应用

Animal Models for Salmonellosis: Applications in Vaccine Research.

作者信息

Higginson Ellen E, Simon Raphael, Tennant Sharon M

机构信息

Center for Vaccine Development and Institute for Global Health, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.

Center for Vaccine Development and Institute for Global Health, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA

出版信息

Clin Vaccine Immunol. 2016 Sep 6;23(9):746-56. doi: 10.1128/CVI.00258-16. Print 2016 Sep.

Abstract

Salmonellosis remains an important cause of human disease worldwide. While there are several licensed vaccines for Salmonella enterica serovar Typhi, these vaccines are generally ineffective against other Salmonella serovars. Vaccines that target paratyphoid and nontyphoidal Salmonella serovars are very much in need. Preclinical evaluation of candidate vaccines is highly dependent on the availability of appropriate scientific tools, particularly animal models. Many different animal models exist for various Salmonella serovars, from whole-animal models to smaller models, such as those recently established in insects. Here, we discuss various mouse, rat, rabbit, calf, primate, and insect models for Salmonella infection, all of which have their place in research. However, choosing the right model is imperative in selecting the best vaccine candidates for further clinical testing. In this minireview, we summarize the various animal models that are used to assess salmonellosis, highlight some of the advantages and disadvantages of each, and discuss their value in vaccine development.

摘要

沙门氏菌病仍然是全球人类疾病的一个重要病因。虽然有几种针对伤寒沙门氏菌的许可疫苗,但这些疫苗通常对其他沙门氏菌血清型无效。非常需要针对副伤寒和非伤寒沙门氏菌血清型的疫苗。候选疫苗的临床前评估高度依赖于适当科学工具的可用性,特别是动物模型。针对各种沙门氏菌血清型存在许多不同的动物模型,从全动物模型到较小的模型,如最近在昆虫中建立的模型。在这里,我们讨论用于沙门氏菌感染的各种小鼠、大鼠、兔子、小牛、灵长类动物和昆虫模型,所有这些模型在研究中都有其作用。然而,选择合适的模型对于选择最佳候选疫苗进行进一步临床试验至关重要。在这篇小型综述中,我们总结了用于评估沙门氏菌病的各种动物模型,突出了每种模型的一些优缺点,并讨论了它们在疫苗开发中的价值。

相似文献

1
Animal Models for Salmonellosis: Applications in Vaccine Research.
Clin Vaccine Immunol. 2016 Sep 6;23(9):746-56. doi: 10.1128/CVI.00258-16. Print 2016 Sep.
2
A Highly Effective Component Vaccine against Nontyphoidal Salmonella enterica Infections.
mBio. 2015 Sep 22;6(5):e01421-15. doi: 10.1128/mBio.01421-15.
3
Salmonella Serogroup C: Current Status of Vaccines and Why They Are Needed.
Clin Vaccine Immunol. 2016 Sep 6;23(9):737-45. doi: 10.1128/CVI.00243-16. Print 2016 Sep.
4
Vaccines against invasive Salmonella disease: current status and future directions.
Hum Vaccin Immunother. 2014;10(6):1478-93. doi: 10.4161/hv.29054. Epub 2014 May 7.
5
Identification and characterization of OmpL as a potential vaccine candidate for immune-protection against salmonellosis in mice.
Vaccine. 2013 Jun 19;31(28):2930-6. doi: 10.1016/j.vaccine.2013.04.044. Epub 2013 May 1.
6
Prospects for prevention of Salmonella infection in children through vaccination.
Curr Opin Infect Dis. 2013 Jun;26(3):254-62. doi: 10.1097/QCO.0b013e32835fb829.
7
Salmonella vaccines: lessons from the mouse model or bad teaching?
Curr Opin Microbiol. 2014 Feb;17:99-105. doi: 10.1016/j.mib.2013.12.004. Epub 2014 Jan 20.
8
Advances in the development of Salmonella-based vaccine strategies for protection against Salmonellosis in humans.
J Appl Microbiol. 2021 Dec;131(6):2640-2658. doi: 10.1111/jam.15055. Epub 2021 Apr 3.
9
Increasing rates of Salmonella Paratyphi A and the current status of its vaccine development.
Expert Rev Vaccines. 2013 Sep;12(9):1021-31. doi: 10.1586/14760584.2013.825450.
10
Safety and tolerability of a live oral Salmonella typhimurium vaccine candidate in SIV-infected nonhuman primates.
Vaccine. 2013 Dec 2;31(49):5879-88. doi: 10.1016/j.vaccine.2013.09.041. Epub 2013 Oct 5.

引用本文的文献

2
Molecular mechanisms of co-infections.
EMBO Rep. 2025 Aug;26(15):3714-3729. doi: 10.1038/s44319-025-00517-2. Epub 2025 Jul 4.
3
Genetic engineering of E. coli K-12 for heterologous carbohydrate antigen production.
Microb Cell Fact. 2025 May 28;24(1):126. doi: 10.1186/s12934-025-02749-2.
7
Tackling salmonellosis: A comprehensive exploration of risks factors, impacts, and solutions.
Open Vet J. 2024 Jun;14(6):1313-1329. doi: 10.5455/OVJ.2024.v14.i6.1. Epub 2024 Jun 30.
9
The and Double-Gene Mutant Strain Has Potential to Be a Live Attenuated Vaccine against Typhimurium.
Vaccines (Basel). 2024 Feb 4;12(2):162. doi: 10.3390/vaccines12020162.
10

本文引用的文献

1
Nontyphoidal salmonella disease: Current status of vaccine research and development.
Vaccine. 2016 Jun 3;34(26):2907-2910. doi: 10.1016/j.vaccine.2016.03.072. Epub 2016 Mar 29.
2
Mice Lacking TLR11 Exhibit Variable Salmonella typhi Susceptibility.
Cell. 2016 Feb 25;164(5):829-30. doi: 10.1016/j.cell.2016.02.020.
3
Absence of TLR11 in Mice Does Not Confer Susceptibility to Salmonella Typhi.
Cell. 2016 Feb 25;164(5):827-8. doi: 10.1016/j.cell.2016.02.015.
7
Live attenuated vaccines for invasive Salmonella infections.
Vaccine. 2015 Jun 19;33 Suppl 3(0 3):C36-41. doi: 10.1016/j.vaccine.2015.04.029. Epub 2015 Apr 19.
8
Global burden of invasive nontyphoidal Salmonella disease, 2010(1).
Emerg Infect Dis. 2015 Jun;21(6):941-9. doi: 10.3201/eid2106.140999.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验