Suppr超能文献

用于异源碳水化合物抗原生产的大肠杆菌K-12基因工程。

Genetic engineering of E. coli K-12 for heterologous carbohydrate antigen production.

作者信息

Li Caixia, Zha Hongxu, Jiao Ziyan, Wei Keyan, Gao Huaiyu, Lai Feiyi, Zhou Zuoyong, Luo Hongyan, Li Pei

机构信息

College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.

出版信息

Microb Cell Fact. 2025 May 28;24(1):126. doi: 10.1186/s12934-025-02749-2.

Abstract

BACKGROUND

Carbohydrate-based vaccines have made a remarkable impact on public health over the past three decades. Efficient production of carbohydrate antigens is a crucial prerequisite for the development of such vaccines. The enzymes involved in the synthesis of bacterial surface carbohydrate antigens are usually encoded by large, uninterrupted gene clusters. Non-pathogenic E. coli glycoengineering starts with the genetic manipulation of these clusters. Heterologous gene cluster recombination through an expression plasmid has several drawbacks, including continuous antibiotic selection pressure, genetic instability, and metabolic burdens. In contrast, chromosome-level gene cluster expression can minimize the metabolic effects on the host and reduce industrial costs.

RESULTS

In this study, we employed the suicide vector-mediated allelic exchange method to directly replace the native polysaccharide gene clusters in E. coli with heterologous ones. Unlike previously strategies, this method does not rely on I-SceI endonuclease or CRISPR/Cas system to release the linearized DNA insert and λ-red recombinase to promote its homologous recombination. Meanwhile, the vectors could be conveniently constructed by assembling multiple large DNA fragments in order in vitro. The scarless chromosomal insertions were confirmed by whole-genome sequencing and the polysaccharide phenotypes of all glycoengineered E. coli mutants were evaluated through growth curves, silver staining, western blot, and flow cytometry. The data indicated that there was no obvious metabolic burden associated with the insertion of large gene clusters into the E. coli W3110 O-antigen locus, and the glycoengineered E. coli can produce LPS with a recovery rate around 1% of the bacterial dry weight. Moreover, the immunogenicity of the heterologously expressed carbohydrate antigens was analyzed by mice immunization experiments. The ELISA data demonstrated the successful induction of anti-polysaccharide IgM or IgG antibodies.

CONCLUSIONS

We have provided a convenient and reliable genomic glycoengineering method to produce efficacious, durable, and cost-effective carbohydrate antigens in non-pathogenic E. coli. Non-pathogenic E. coli glycoengineering has great potential for the highly efficient synthesis of heterologous polysaccharides and can serve as a versatile platform to produce next-generation biomedical agents, including glycoconjugate vaccines, glycoengineered minicells or outer membrane vesicles (OMVs), polysaccharide-based diagnostic reagents, and more.

摘要

背景

在过去三十年中,基于碳水化合物的疫苗对公共卫生产生了显著影响。高效生产碳水化合物抗原是此类疫苗开发的关键前提。参与细菌表面碳水化合物抗原合成的酶通常由大型不间断基因簇编码。非致病性大肠杆菌糖工程始于对这些基因簇的基因操作。通过表达质粒进行异源基因簇重组存在几个缺点,包括持续的抗生素选择压力、遗传不稳定性和代谢负担。相比之下,染色体水平的基因簇表达可以将对宿主的代谢影响降至最低,并降低工业成本。

结果

在本研究中,我们采用自杀载体介导的等位基因交换方法,直接用异源基因簇替换大肠杆菌中的天然多糖基因簇。与先前的策略不同,该方法不依赖I-SceI内切酶或CRISPR/Cas系统来释放线性化的DNA插入片段,也不依赖λ-red重组酶来促进其同源重组。同时,通过在体外依次组装多个大DNA片段,可以方便地构建载体。通过全基因组测序确认了无痕染色体插入,并通过生长曲线、银染、蛋白质印迹和流式细胞术评估了所有糖工程化大肠杆菌突变体的多糖表型。数据表明,将大基因簇插入大肠杆菌W3110 O抗原位点没有明显的代谢负担,并且糖工程化大肠杆菌可以产生脂多糖,回收率约为细菌干重的1%。此外,通过小鼠免疫实验分析了异源表达的碳水化合物抗原的免疫原性。酶联免疫吸附测定数据表明成功诱导了抗多糖IgM或IgG抗体。

结论

我们提供了一种方便可靠的基因组糖工程方法,用于在非致病性大肠杆菌中生产有效、持久且具有成本效益的碳水化合物抗原。非致病性大肠杆菌糖工程在高效合成异源多糖方面具有巨大潜力,可作为一个通用平台来生产下一代生物医学制剂,包括糖缀合物疫苗、糖工程化微细胞或外膜囊泡(OMV)、基于多糖的诊断试剂等。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验