Suppr超能文献

基于影像引导的脑深部电刺激术中锥体束副作用的术前预测:概念验证及在苍白球刺激诱发锥体束副作用中的应用

Image-guided preoperative prediction of pyramidal tract side effect in deep brain stimulation: proof of concept and application to the pyramidal tract side effect induced by pallidal stimulation.

作者信息

Baumgarten Clement, Zhao Yulong, Sauleau Paul, Malrain Cecile, Jannin Pierre, Haegelen Claire

机构信息

French Institute of Health and Medical Research, UMR 1099, 2 avenue du Pr. Léon Bernard, Rennes Cedex 35043, France; University of Rennes 1, Treatment of Signal and Imaging Laboratory, 2 avenue du Pr. Léon Bernard, Rennes Cedex 35043, France.

Rennes University Hospital , Department of Neurology, 2 rue Henri Le Guilloux, 35033 Rennes Cedex 9, France.

出版信息

J Med Imaging (Bellingham). 2016 Apr;3(2):025001. doi: 10.1117/1.JMI.3.2.025001. Epub 2016 Jun 30.

Abstract

Deep brain stimulation of the medial globus pallidus (GPm) is a surgical procedure for treating patients suffering from Parkinson's disease. Its therapeutic effect may be limited by the presence of pyramidal tract side effect (PTSE). PTSE is a contraction time-locked to the stimulation when the current spreading reaches the motor fibers of the pyramidal tract within the internal capsule. The objective of the study was to propose a preoperative predictive model of PTSE. A machine learning-based method called PyMAN (PTSE model based on artificial neural network) accounting for the current used in stimulation, the three-dimensional electrode coordinates and the angle of the trajectory, was designed to predict the occurrence of PTSE. Ten patients implanted in the GPm have been tested by a clinician to create a labeled dataset of the stimulation parameters that trigger PTSE. The kappa index value between the data predicted by PyMAN and the labeled data was 0.78. Further evaluation studies are desirable to confirm whether PyMAN could be a reliable tool for assisting the surgeon to prevent PTSE during the preoperative planning.

摘要

内侧苍白球(GPm)的深部脑刺激是一种治疗帕金森病患者的外科手术。其治疗效果可能会受到锥体束副作用(PTSE)的限制。PTSE是当电流扩散到达内囊内锥体束的运动纤维时与刺激时间锁定的收缩。该研究的目的是提出一种PTSE的术前预测模型。一种基于机器学习的方法PyMAN(基于人工神经网络的PTSE模型),考虑了刺激中使用的电流、三维电极坐标和轨迹角度,旨在预测PTSE的发生。一名临床医生对10名植入GPm的患者进行了测试,以创建触发PTSE的刺激参数的标记数据集。PyMAN预测的数据与标记数据之间的kappa指数值为0.78。需要进一步的评估研究来确认PyMAN是否可以成为在术前规划中协助外科医生预防PTSE的可靠工具。

相似文献

本文引用的文献

4
Analysis of electrode deformations in deep brain stimulation surgery.脑深部电刺激术中的电极变形分析。
Int J Comput Assist Radiol Surg. 2014 Jan;9(1):107-17. doi: 10.1007/s11548-013-0911-x. Epub 2013 Jun 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验