Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan.
Phys Rev E. 2016 Jun;93(6):062109. doi: 10.1103/PhysRevE.93.062109. Epub 2016 Jun 6.
We consider the Langevin equation with dichotomously fluctuating diffusivity, where the diffusion coefficient changes dichotomously over time, in order to study fluctuations of time-averaged observables in temporally heterogeneous diffusion processes. We find that the time-averaged mean-square displacement (TMSD) can be represented by the occupation time of a state in the asymptotic limit of the measurement time and hence occupation time statistics is a powerful tool for calculating the TMSD in the model. We show that the TMSD increases linearly with time (normal diffusion) but the time-averaged diffusion coefficients are intrinsically random when the mean sojourn time for one of the states diverges, i.e., intrinsic nonequilibrium processes. Thus, we find that temporally heterogeneous environments provide anomalous fluctuations of time-averaged diffusivity, which have relevance to large fluctuations of the diffusion coefficients obtained by single-particle-tracking trajectories in experiments.
我们考虑带有二项式扩散的 Langevin 方程,其中扩散系数随时间二项式地变化,以研究时间非均匀扩散过程中时间平均可观测量的波动。我们发现,时间平均均方位移(TMSD)可以通过测量时间的渐近极限中的占据时间来表示,因此占据时间统计是计算模型中 TMSD 的有力工具。我们表明,当一个状态的平均停留时间发散时,TMSD 随时间线性增加(正常扩散),但是时间平均扩散系数是内在随机的,即内在非平衡过程。因此,我们发现时间非均匀环境提供了时间平均扩散率的异常波动,这与实验中单粒子跟踪轨迹获得的扩散系数的大波动有关。