Suppr超能文献

具有时间依赖性和波动扩散系数的朗之万方程的时间平均均方位移的涨落分析。

Fluctuation analysis of time-averaged mean-square displacement for the Langevin equation with time-dependent and fluctuating diffusivity.

作者信息

Uneyama Takashi, Miyaguchi Tomoshige, Akimoto Takuma

机构信息

Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan.

Department of Mathematics Education, Naruto University of Education, Tokushima 772-8502, Japan.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032140. doi: 10.1103/PhysRevE.92.032140. Epub 2015 Sep 29.

Abstract

The mean-square displacement (MSD) is widely utilized to study the dynamical properties of stochastic processes. The time-averaged MSD (TAMSD) provides some information on the dynamics which cannot be extracted from the ensemble-averaged MSD. In particular, the relative standard deviation (RSD) of the TAMSD can be utilized to study the long-time relaxation behavior. In this work, we consider a class of Langevin equations which are multiplicatively coupled to time-dependent and fluctuating diffusivities. Various interesting dynamics models such as entangled polymers and supercooled liquids can be interpreted as the Langevin equations with time-dependent and fluctuating diffusivities. We derive a general formula for the RSD of the TAMSD for the Langevin equation with the time-dependent and fluctuating diffusivity. We show that the RSD can be expressed in terms of the correlation function of the diffusivity. The RSD exhibits the crossover at the long time region. The crossover time is related to a weighted average relaxation time for the diffusivity. Thus the crossover time gives some information on the relaxation time of fluctuating diffusivity which cannot be extracted from the ensemble-averaged MSD. We discuss the universality and possible applications of the formula via some simple examples.

摘要

均方位移(MSD)被广泛用于研究随机过程的动力学性质。时间平均均方位移(TAMSD)提供了一些从系综平均均方位移中无法提取的动力学信息。特别地,TAMSD的相对标准偏差(RSD)可用于研究长时间的弛豫行为。在这项工作中,我们考虑一类与时间相关且波动的扩散系数相乘耦合的朗之万方程。各种有趣的动力学模型,如缠结聚合物和过冷液体,都可以解释为具有时间相关且波动扩散系数的朗之万方程。我们推导了具有时间相关且波动扩散系数的朗之万方程的TAMSD的RSD的一般公式。我们表明,RSD可以用扩散系数的相关函数来表示。RSD在长时间区域表现出交叉现象。交叉时间与扩散系数的加权平均弛豫时间有关。因此,交叉时间给出了一些关于波动扩散系数弛豫时间的信息,这些信息无法从系综平均均方位移中提取。我们通过一些简单的例子讨论了该公式的普遍性和可能的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验