Anderson Douglas M, Cannavino Jessica, Li Hui, Anderson Kelly M, Nelson Benjamin R, McAnally John, Bezprozvannaya Svetlana, Liu Yun, Lin Weichun, Liu Ning, Bassel-Duby Rhonda, Olson Eric N
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390;
Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):E4494-503. doi: 10.1073/pnas.1608423113. Epub 2016 Jul 14.
Innervation of skeletal muscle by motor neurons occurs through the neuromuscular junction, a cholinergic synapse essential for normal muscle growth and function. Defects in nerve-muscle signaling cause a variety of neuromuscular disorders with features of ataxia, paralysis, skeletal muscle wasting, and degeneration. Here we show that the nuclear zinc finger protein ZFP106 is highly enriched in skeletal muscle and is required for postnatal maintenance of myofiber innervation by motor neurons. Genetic disruption of Zfp106 in mice results in progressive ataxia and hindlimb paralysis associated with motor neuron degeneration, severe muscle wasting, and premature death by 6 mo of age. We show that ZFP106 is an RNA-binding protein that associates with the core splicing factor RNA binding motif protein 39 (RBM39) and localizes to nuclear speckles adjacent to spliceosomes. Upon inhibition of pre-mRNA synthesis, ZFP106 translocates with other splicing factors to the nucleolus. Muscle and spinal cord of Zfp106 knockout mice displayed a gene expression signature of neuromuscular degeneration. Strikingly, altered splicing of the Nogo (Rtn4) gene locus in skeletal muscle of Zfp106 knockout mice resulted in ectopic expression of NOGO-A, the neurite outgrowth factor that inhibits nerve regeneration and destabilizes neuromuscular junctions. These findings reveal a central role for Zfp106 in the maintenance of nerve-muscle signaling, and highlight the involvement of aberrant RNA processing in neuromuscular disease pathogenesis.
运动神经元对骨骼肌的神经支配通过神经肌肉接头实现,这是一种对正常肌肉生长和功能至关重要的胆碱能突触。神经 - 肌肉信号传导缺陷会导致多种神经肌肉疾病,其特征包括共济失调、瘫痪、骨骼肌萎缩和变性。在这里,我们表明核锌指蛋白ZFP106在骨骼肌中高度富集,并且是运动神经元对肌纤维神经支配的出生后维持所必需的。小鼠中Zfp106的基因破坏导致进行性共济失调和后肢瘫痪,伴有运动神经元变性、严重肌肉萎缩,并在6月龄时过早死亡。我们表明ZFP106是一种RNA结合蛋白,它与核心剪接因子RNA结合基序蛋白39(RBM39)相关联,并定位于剪接体附近的核斑点。在抑制前体mRNA合成后,ZFP106与其他剪接因子一起转运到核仁。Zfp106基因敲除小鼠的肌肉和脊髓表现出神经肌肉变性的基因表达特征。令人惊讶的是,Zfp106基因敲除小鼠骨骼肌中Nogo(Rtn4)基因位点的剪接改变导致NOGO - A的异位表达,NOGO - A是一种抑制神经再生并破坏神经肌肉接头稳定性的神经突生长因子。这些发现揭示了Zfp106在维持神经 - 肌肉信号传导中的核心作用,并突出了异常RNA加工在神经肌肉疾病发病机制中的参与。