Abert Claas, Hrkac Gino, Page Marcus, Praetorius Dirk, Ruggeri Michele, Suess Dieter
Institute of Solid State Physics, Vienna University of Technology, Austria.
College of Engineering, Mathematics and Physical Sciences, University of Exeter, United Kingdom.
Comput Math Appl. 2014 Sep;68(6):639-654. doi: 10.1016/j.camwa.2014.07.010.
We propose and analyze a decoupled time-marching scheme for the coupling of the Landau-Lifshitz-Gilbert equation with a quasilinear diffusion equation for the spin accumulation. This model describes the interplay of magnetization and electron spin accumulation in magnetic and nonmagnetic multilayer structures. Despite the strong nonlinearity of the overall PDE system, the proposed integrator requires only the solution of two linear systems per time-step. Unconditional convergence of the integrator towards weak solutions is proved.
我们提出并分析了一种解耦的时间推进格式,用于将朗道 - 里夫希茨 - 吉尔伯特方程与用于自旋积累的拟线性扩散方程进行耦合。该模型描述了磁性和非磁性多层结构中磁化与电子自旋积累之间的相互作用。尽管整个偏微分方程系统具有很强的非线性,但所提出的积分器在每个时间步仅需要求解两个线性系统。证明了该积分器对于弱解的无条件收敛性。