Isler Yalcin
Izmir Katip Celebi University, Department of Biomedical Engineering, Cigli, Izmir, Turkey.
Comput Biol Med. 2016 Sep 1;76:113-9. doi: 10.1016/j.compbiomed.2016.06.029. Epub 2016 Jun 30.
In this study, the heart rate variability (HRV) analysis is used to distinguish patients with systolic congestive heart failure (CHF) from patients with diastolic CHF. In the analysis performed, the best accuracy performances of short-term HRV measures are compared. These measures are calculated in four different ways with optional normalization methods of heart rate and data. The nearest neighbor and the multi-layer perceptron (MLP) are used to evaluate the performances in discriminating these two groups. The results point out that using both data and heart rate normalizations enhances the classifier performance. The maximum accuracy is obtained as 96.43% with MLP classifier.
在本研究中,心率变异性(HRV)分析用于区分收缩性充血性心力衰竭(CHF)患者与舒张性CHF患者。在所进行的分析中,比较了短期HRV测量的最佳准确性表现。这些测量以四种不同方式计算,并采用了心率和数据的可选归一化方法。使用最近邻法和多层感知器(MLP)来评估区分这两组的性能。结果指出,同时使用数据和心率归一化可提高分类器性能。使用MLP分类器时,最大准确率达到了96.43%。