Jud Christoph, Schaff Florian, Zanette Irene, Wolf Johannes, Fehringer Andreas, Pfeiffer Franz
Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching, Germany.
Lehrstuhl für Biomedizinische Physik, Physik-Department & Institut für Medizintechnik, Technische Universität München, 85748 Garching, Germany.
Dent Mater. 2016 Sep;32(9):1189-95. doi: 10.1016/j.dental.2016.06.021. Epub 2016 Jul 15.
Dentin is a mineralized material making up most of the tooth bulk. A system of microtubules, so called dentinal tubules, transverses it radially from the pulp chamber to the outside. This highly oriented structure leads to anisotropic mechanical properties directly connected to the tubules orientation and density: the ultimate tensile strength as well as the fracture toughness and the shear strength are largest perpendicular to dentinal tubules. Consequently, the fatigue strength depends on the direction of dentinal tubules, too. However, none of the existing techniques used to investigate teeth provide access to orientation and density of dentinal tubules for an entire specimen in a non-destructive way. In this paper, we measure a third molar human tooth both with conventional micro-CT and X-ray tensor tomography (XTT). While the achievable resolution in micro-CT is too low to directly resolve the dentinal tubules, we provide strong evidence that the direction and density of dentinal tubules can be indirectly measured by XTT, which exploits small-angle X-ray scattering to retrieve a 3D map of scattering tensors. We show that the mean directions of scattering structures correlate to the orientation of dentinal tubules and that the mean effective scattering strength provides an estimation of the relative density of dentinal tubules. Thus, this method could be applied to investigate the connection between tubule orientation and fatigue or tensile properties of teeth for a full sample without cutting one, non-representative peace of tooth out of the full sample.
牙本质是一种矿化物质,构成了牙齿的大部分体积。一个由微管组成的系统,即所谓的牙本质小管,从牙髓腔径向穿过牙本质直至外部。这种高度定向的结构导致了与小管方向和密度直接相关的各向异性力学性能:极限拉伸强度、断裂韧性和剪切强度在垂直于牙本质小管的方向上最大。因此,疲劳强度也取决于牙本质小管的方向。然而,现有的用于研究牙齿的技术中,没有一种能够以无损方式获取整个样本中牙本质小管的方向和密度。在本文中,我们使用传统的微型计算机断层扫描(micro-CT)和X射线张量断层扫描(XTT)对一颗人类第三磨牙进行了测量。虽然微型计算机断层扫描可达到的分辨率过低,无法直接分辨牙本质小管,但我们提供了有力证据表明,牙本质小管的方向和密度可以通过XTT间接测量,XTT利用小角X射线散射来获取散射张量的三维图。我们表明,散射结构的平均方向与牙本质小管的方向相关,并且平均有效散射强度提供了牙本质小管相对密度的估计。因此,这种方法可用于研究完整样本中牙本质小管方向与牙齿疲劳或拉伸性能之间的关系,而无需从完整样本中切割出一块不具代表性的牙齿。