Suppr超能文献

事件发生率下的净重新分类指数:特性与关系

Net reclassification index at event rate: properties and relationships.

作者信息

Pencina Michael J, Steyerberg Ewout W, D'Agostino Ralph B

机构信息

Department of Biostatistics and Bioinformatics, Duke Clinical Research Institute, Durham, NC, 27710, U.S.A.

Department of Public Health, Erasmus MC - University Medical Center Rotterdam, 3000 CA, Rotterdam, The Netherlands.

出版信息

Stat Med. 2017 Dec 10;36(28):4455-4467. doi: 10.1002/sim.7041. Epub 2016 Jul 18.

Abstract

The net reclassification improvement (NRI) is an attractively simple summary measure quantifying improvement in performance because of addition of new risk marker(s) to a prediction model. Originally proposed for settings with well-established classification thresholds, it quickly extended into applications with no thresholds in common use. Here we aim to explore properties of the NRI at event rate. We express this NRI as a difference in performance measures for the new versus old model and show that the quantity underlying this difference is related to several global as well as decision analytic measures of model performance. It maximizes the relative utility (standardized net benefit) across all classification thresholds and can be viewed as the Kolmogorov-Smirnov distance between the distributions of risk among events and non-events. It can be expressed as a special case of the continuous NRI, measuring reclassification from the 'null' model with no predictors. It is also a criterion based on the value of information and quantifies the reduction in expected regret for a given regret function, casting the NRI at event rate as a measure of incremental reduction in expected regret. More generally, we find it informative to present plots of standardized net benefit/relative utility for the new versus old model across the domain of classification thresholds. Then, these plots can be summarized with their maximum values, and the increment in model performance can be described by the NRI at event rate. We provide theoretical examples and a clinical application on the evaluation of prognostic biomarkers for atrial fibrillation. Copyright © 2016 John Wiley & Sons, Ltd.

摘要

净重新分类改善(NRI)是一种极具吸引力的简单汇总指标,用于量化由于在预测模型中添加新的风险标志物而带来的性能改善。它最初是为具有既定分类阈值的情况而提出的,很快就扩展到了没有常用阈值的应用中。在这里,我们旨在探讨事件发生率下NRI的特性。我们将此NRI表示为新模型与旧模型性能指标的差异,并表明这种差异背后的量与模型性能的几个全局以及决策分析指标相关。它在所有分类阈值上最大化相对效用(标准化净效益),并且可以被视为事件和非事件之间风险分布的Kolmogorov-Smirnov距离。它可以表示为连续NRI的一种特殊情况,测量从没有预测变量的“空”模型的重新分类。它也是基于信息价值的一个标准,并量化了给定后悔函数下预期后悔的减少,将事件发生率下的NRI视为预期后悔增量减少的一种度量。更一般地,我们发现展示新模型与旧模型在分类阈值范围内的标准化净效益/相对效用图很有意义。然后,这些图可以用它们的最大值进行汇总,并且模型性能的增量可以用事件发生率下的NRI来描述。我们提供了关于房颤预后生物标志物评估的理论示例和临床应用。版权所有© 2016约翰威立父子有限公司。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验