Askar Abdelrahman M, Shankar Karthik
J Nanosci Nanotechnol. 2016 Jun;16(6):5890-901. doi: 10.1166/jnn.2016.12936.
The recent dramatic increase in the power conversion efficiencies of organic-inorganic tri-halide perovskite solar cells has triggered intense research worldwide and created a paradigm shift in the photovoltaics field. It is crucial to develop a solid understanding of the photophysical processes underlying solar cell operation in order to both further improve the photovoltaic performance of perovskite solar cells as well as to exploit the broader optoelectronic applications of the tri-halide perovskites. In this short review, we summarize the main research findings about the binding energy of excitons in tri-halide perovskite materials and find that a value in the range of 2-22 meV at room temperature would be a safe estimate. Spontaneous free carrier generation is the dominant process taking place directly after photoexcitation in organic-inorganic tri-halide perovskites at room temperature, which eliminates the exciton diffusion bottleneck present in organic solar cells and constitutes a major contributing factor to the high photovoltaic performance of this material.
近年来,有机-无机三卤化物钙钛矿太阳能电池的功率转换效率急剧提高,引发了全球范围内的深入研究,并在光伏领域带来了范式转变。深入了解太阳能电池运行背后的光物理过程至关重要,这既能进一步提高钙钛矿太阳能电池的光伏性能,又能拓展三卤化物钙钛矿在更广泛的光电子应用。在这篇简短的综述中,我们总结了关于三卤化物钙钛矿材料中激子结合能的主要研究发现,发现在室温下2-22毫电子伏特的范围是一个合理的估计值。在室温下,自发自由载流子的产生是有机-无机三卤化物钙钛矿光激发后直接发生的主要过程,这消除了有机太阳能电池中存在的激子扩散瓶颈,是这种材料具有高光伏性能的一个主要因素。