Van Poucke Sven, Zhang Zhongheng, Roest Mark, Vukicevic Milan, Beran Maud, Lauwereins Bart, Zheng Ming-Hua, Henskens Yvonne, Lancé Marcus, Marcus Abraham
Department of Anesthesiology, Intensive Care, Emergency Medicine and Pain Therapy, Ziekenhuis Oost-Limburg, Genk, Belgium Department of Critical Care Medicine, Jinhua Hospital of Zhejiang University, Zhejiang, P.R. China Synapse Research Institute, Maastricht, The Netherlands Department of Organizational Sciences, University of Belgrade, Belgrade, Serbia Department of Infection and Liver Diseases, Liver Research Center, Wenzhou Medical University, Wenzhou, China Central Diagnostic Laboratory, Maastricht University Medical Centre (MUMC+) Department of Anaesthesiology & Pain Treatment, Maastricht University Medical Centre, Maastricht, The Netherlands Department of Anesthesiology, ICU and Perioperative Medicine, HMC, Doha, Qatar.
Medicine (Baltimore). 2016 Jul;95(28):e4188. doi: 10.1097/MD.0000000000004188.
Platelet function can be quantitatively assessed by specific assays such as light-transmission aggregometry, multiple-electrode aggregometry measuring the response to adenosine diphosphate (ADP), arachidonic acid, collagen, and thrombin-receptor activating peptide and viscoelastic tests such as rotational thromboelastometry (ROTEM).The task of extracting meaningful statistical and clinical information from high-dimensional data spaces in temporal multivariate clinical data represented in multivariate time series is complex. Building insightful visualizations for multivariate time series demands adequate usage of normalization techniques.In this article, various methods for data normalization (z-transformation, range transformation, proportion transformation, and interquartile range) are presented and visualized discussing the most suited approach for platelet function data series.Normalization was calculated per assay (test) for all time points and per time point for all tests.Interquartile range, range transformation, and z-transformation demonstrated the correlation as calculated by the Spearman correlation test, when normalized per assay (test) for all time points. When normalizing per time point for all tests, no correlation could be abstracted from the charts as was the case when using all data as 1 dataset for normalization.
血小板功能可通过特定检测方法进行定量评估,如透光聚集法、测量对二磷酸腺苷(ADP)、花生四烯酸、胶原蛋白和凝血酶受体激活肽反应的多电极聚集法,以及粘弹性检测,如旋转血栓弹力图(ROTEM)。从多变量时间序列中表示的高维数据空间的时间多变量临床数据中提取有意义的统计和临床信息是一项复杂的任务。为多变量时间序列构建有洞察力的可视化需要充分使用归一化技术。本文介绍并可视化了各种数据归一化方法(z变换、范围变换、比例变换和四分位间距),讨论了最适合血小板功能数据序列的方法。对所有时间点的每个检测(试验)以及所有检测的每个时间点计算归一化。当对所有时间点的每个检测(试验)进行归一化时,四分位间距、范围变换和z变换显示出通过斯皮尔曼相关性检验计算出的相关性。当对所有检测的每个时间点进行归一化时,与将所有数据作为一个数据集进行归一化的情况不同,图表中无法提取相关性。