Suppr超能文献

在大型流行病学研究中采用全条件设定多重填补法处理缺失数据

Multiple Imputation by Fully Conditional Specification for Dealing with Missing Data in a Large Epidemiologic Study.

作者信息

Liu Yang, De Anindya

机构信息

Division of Analysis, Research, and Practice Integration, National Center for Injury Prevention and Control, U.S. Centers for Disease Control and Prevention, Atlanta, GA 30341, USA; Division of Global HIV/AIDS, Center for Global Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, 30333, USA.

Division of Global HIV/AIDS, Center for Global Health, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, 30333, USA.

出版信息

Int J Stat Med Res. 2015;4(3):287-295. doi: 10.6000/1929-6029.2015.04.03.7. Epub 2015 Aug 19.

Abstract

Missing data commonly occur in large epidemiologic studies. Ignoring incompleteness or handling the data inappropriately may bias study results, reduce power and efficiency, and alter important risk/benefit relationships. Standard ways of dealing with missing values, such as complete case analysis (CCA), are generally inappropriate due to the loss of precision and risk of bias. Multiple imputation by fully conditional specification (FCS MI) is a powerful and statistically valid method for creating imputations in large data sets which include both categorical and continuous variables. It specifies the multivariate imputation model on a variable-by-variable basis and offers a principled yet flexible method of addressing missing data, which is particularly useful for large data sets with complex data structures. However, FCS MI is still rarely used in epidemiology, and few practical resources exist to guide researchers in the implementation of this technique. We demonstrate the application of FCS MI in support of a large epidemiologic study evaluating national blood utilization patterns in a sub-Saharan African country. A number of practical tips and guidelines for implementing FCS MI based on this experience are described.

摘要

缺失数据在大型流行病学研究中普遍存在。忽略数据不完整性或不恰当地处理数据可能会使研究结果产生偏差,降低效能和效率,并改变重要的风险/效益关系。由于精度损失和偏差风险,处理缺失值的标准方法,如完全病例分析(CCA),通常并不适用。通过全条件设定进行多重填补(FCS MI)是一种强大且具有统计学有效性的方法,可用于在包含分类变量和连续变量的大型数据集中创建填补值。它在逐个变量的基础上指定多变量填补模型,并提供了一种有原则且灵活的处理缺失数据的方法,这对于具有复杂数据结构的大型数据集尤为有用。然而,FCS MI在流行病学中仍然很少使用,并且几乎没有实际资源可指导研究人员实施这项技术。我们展示了FCS MI在支持一项评估撒哈拉以南非洲国家全国血液使用模式的大型流行病学研究中的应用。基于这一经验,描述了一些实施FCS MI的实用技巧和指南。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f032/4945131/e6d1b417981b/nihms795806f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验